Содержание

Общие сведения,
классификация
Устройство и работа диода
Устройство и работа триода
Электронная эмиссия
Термоэлектронные катоды
Особенности устройства
электронных ламп
Физические процессы
Закон степени трех вторых
Анодная характеристика
Параметры
Рабочий режим. Применение
диода для выпрямления
переменного тока
Основные типы
Физические процессы
Токораспределение
Действующее напряжение и
закон степени трех вторых
Характеристики
Параметры
Особенности
Усилительный каскад с
триодом
Параметры усилительного
каскада
Аналитический расчет и
эквивалентные схемы
усилительного каскада
Графоаналитический расчет
режима усиления
Генератор с триодом
Межэлектродные емкости
Каскады с общей сеткой и
общим анодом
Недостатки триодов
Основные типы приемно-
усилительных триодов
Устройство и работа тетрода
Устройство и работа пентода
Схемы включения тетродов
и пентодов
Характеристики тетродов
и пентодов
Параметры тетродов и
пентодов
Межэлектродные емкости
тетродов и пентодов
Устройство и работа
лучевого тетрода
Характеристики и параметры
лучевого тетрода
Рабочий режим тетродов
и пентодов
Пентоды переменной
крутизны
Краткие сведения о
различных типах
тетродов и пентодов
Специальные лампы
Общие сведения
Электростатические
электронно-лучевые трубки
Магнитные электронно-
лучевые трубки
Люминесцентный экран
Краткие сведения о
различных электронно-
лучевых трубках
Электрический разряд
в газах
Тлеющий разряд
Стабилитроны
Тиратроны тлеющего разряда
Индикаторные приборы
Дисплеи
Краткие сведения о
различных газоразрядных
приборах
Фотоэлектронная эмиссия
Электровакуумные
фотоэлементы
Фотоэлектронные умножители
Причины собственных шумов
Шумовые параметры
Межэлектродные емкости
и индуктивности выводов
Инерция электронов
Наведенные токи в
цепях электродов
Входное сопротивление
и потери энергии
Импульсный режим
Основные типы электронных
ламп для СВЧ
Общие сведения
Пролетный клистрон
Отражательный клистрон
Магнетрон
Лампы бегущей и
обратной волны
Амплитрон и карматрон
Надежность и испытание
электровакуумных приборов
Усилитель на триоде
с общим катодом
Ограничения по выбору
рабочей точки
Режим в рабочей точке
Катодное смещение
Выбор величины
сопротивления резистора
в цепи сетки
Выбор выходного
разделительного
конденсатора
Вредное влияние проходной
емкости лампы и пути
его уменьшения
Применение
экранированных ламп
Каскод (каскодная схема)
Катодный повторитель
Каскад с общим катодом
как приемник
неизменяющегося тока
Пентоды в качестве
приемников
неизменяющегося тока
Катодный повторитель
с активной нагрузкой
Катодный повторитель Уайта
μ-повторитель
Выбор верхней лампы для
μ -повторителя
Параллельно управляемый
двухламповый усилитель
(SRPP)
β-повторитель
Дифференциальная пара
(дифференциальный каскад)
Коэффициент реакции
питающего напряжения
(PSRR)
дифференциальной пары
Полупроводниковые
приемники неизменяющегося
тока для
дифференциальной пары
Использование транзисторов
в качестве активной нагрузки
для электронных ламп
Классификация искажений.
Принципы оценки линейных
искажений
Принципы измерения
нелинейных искажений
Измерение и интерпретация
искажений
Совершенствование
измерений нелинейных
гармонических искажений
Цифровая обработка сигналов
Особенности проектирования
усилителей с малыми
искажениями
Работа с сеточным током
и нелинейные искажения
Уменьшение искажений
подавлением (компенсацией)
Проблемы смещения
по постоянному току
Выбор электронной лампы по
критерию низких искажений
Проблема сопряжения одного
каскада со следующим
Усилитель класса А для
электромагнитных головных
телефонов с непосредств.
междукаскадной связью
Радиокомпоненты -
Общие сведения
Ряды стандартизованных
значений сопротивлений
Металлизированные
пленочные резисторы
Проволочные резисторы
Конденсаторы -
Общие сведения
Металлические конденсаторы
с воздушным диэлектриком
Пленочные конденсаторы,
изготовленные
металлизацией диэлектрика
Алюминиевые
электролитические
конденсаторы
Основные вопросы,
возникающие при
выборе конденсатора
Общие сведения о
катушках индуктивности
Трансформаторы -
Общие сведения
Трансформаторы.
Намагничивание и потери
Модели трансформаторов
Почему необходимо
использовать трансформаторы
Определение параметров
неизвестного трансформатора
Основные виды
источников питания
Выпрямление переменного
тока
Одиночный накопительный
конденсатор в роли
сглаживающего элемента
Влияние напряжения
пульсаций на выходное
напряжение
Насыщение сердечника
трансформатора
Критерии выбора силового
трансформатора
Источник питания со
сглаживающим дросселем
Номинальное значение
тока дросселя
Выбросы тока и
демпфирующие элементы
Использование накопительного
конденсатора для снижения
высоковольтного напряжения
Частотные характеристики
используемых на практике
LC-фильтров
Широкополосная фильтрация
Выпрямители с умножением
(умножители) напряжения
Классическая схема
последовательного
стабилизатора
Двухтранзисторная схема
последовательного
стабилизатора
Стабилизатор цепи сеточного
смещения с регулируемым
выходным напряжением
Источники питания низкого
напряжения и синфазный шум
Ламповый стабилизатор
напряжения
Способы увеличения
выходного тока стабилизатора
Коэффициент режекции
источника питания
Включение сглаживающих
конденсаторов
Перенапряжения при
включении схемы
Составление предварительной
схемы блока питания
Высоковольтный выпрямитель
и стабилизатор
Особенности смещения
подогревателей ламп
Схема улучшенного
источника питания
Рабочий режим
Увеличение максимально
допустимого Vrrm
Выходной каскад класса А
с несимметричным выходом
Особенности акустических
систем
Неидеальности
трансформаторов
Режимы работы усилительных
приборов. Классы усилителей
Двухтактный выходной каскад
Выходной каскад по
ультралинейной схеме
Трансформаторный катодный
повторитель
Усилители без выходного
трансформатора
Составляющие блока
усилителя мощности
Предоконечный каскад блока
усилителя мощности
Фазоинверсный каскад
Дифференциальный усилитель
или пара с катодной связью
«Согласованный»
фазоинвертор
Общие проблемы
устойчивости усилителей
Подавление первой
доминанты ВЧ составляющей
Низкочастотное
самовозбуждение усилителя
Усилитель Williamson
Усилитель Milliard 5-20
Усилитель Quad II
Выбор выходной лампы
Выбор статической рабочей
точки с учетом Pвых и КНИ
Точное определение
выходного трансформатора
Особенность выпрямление
высоковольтного напряжения
Варианты применения
стабилизатора ВВ напряжения
Требования к каскаду
предоконечного усиления
Определение рабочей точки
предоконечного каскада
Проверка работоспособности
усилителя
Пример разработки
двухтактного УМ
Оптимизация входного и
фазоинверсного каскадов
Расчет R катодного смещения
лампы и R обратной связи
Выбор элементов
оконечного каскада
Разработка усилителей
мощностью более 10 Вт
Активные кроссоверы
и схема Зобеля
Выбор лампы для
оконечного каскада
Требования к предоконечному
каскаду усиления
Источники питания и
постоянная токовая нагрузка
Второй дифференциальный
усилитель и выходной каскад
Первый дифференциальный
усилитель и линейность х-ки
Каскодная схема постоянной
токовой нагрузки
Постоянная токовая нагрузка
первого диф. каскада
Элементы, повышающие ВЧ
устойчивость. Итоговая схема
Схема источника питания
«Потомок от усилителя Beast»
Расчет уровня фонового
шума от ИП
Особенности цифрового
сигнала от компакт-диска
Требования к предусилителю
Технические требования
к линейному каскаду
Традиционный линейный
каскад
Пути достижения заданных
требований и выбор лампы
Основные проблемы
регулирования громкости
Переключаемые аттенюаторы
Расчет переключаемого
аттенюатора
Табличные вычисления для
расчета регулятора громкости
Светочувствительные
резисторы и громкость
Входной переключатель
Частотный корректор RIAA
Влияние провода
звукоснимателя
Требования к блоку
частотной коррекции
Метод частотной коррекции
стандарта RIAA
Раздельное выравнивание
характеристики RIAA
Шумы и влияние входной
емкости входного каскада
Учет собственных
шумов лампы
Улучшение шумовых
характеристик с RIAA
Расчет элементов на 75 мкс
Параметры цепей на
3180 мкс и 318 мкс
Симметричный вход и
подключение звукоснимателя
Симметричный предусилитель
Возможности исключения
линейного каскада
Вариант RIAA с исполь-
зованием лампы типа ЕС8010
Оптимизация характеристик
входного трансформатора
Анализ работы блока RIAA
Практические методы
настройки блока RIAA
Линейный каскад
О межблочных и
акустических кабелях

 

 
 

Топология схемы: источники питания и их влияние на элементы, задающие постоянную токовую нагрузку

Лампы семейства *SN7/*N7 вносят нелинейные искажения, в основном, на второй гармонике, влияние которой может быть нейтрализовано использованием в качестве предусилительного каскада дифференциального усилителя при условии, что при этом нет потерь по переменной составляющей полезного тока (сигнала) в общем резисторе дифференциальной пары.

Упрощенная принципиальная схема усилителя

Рис. 7.41 Упрощенная принципиальная схема усилителя

Следовательно, необходима установка активных элементов в общие цепи питания обоих дифференциальных усилителей (то есть создание активной цепи неизменяющегося тока). Но, поскольку сетки имеют емкостную связь с предыдущим каскадом (то есть гальванически развязаны с ним), то цепи питания сеток подсоединены к тому же самому выводу источника питания, что и элементы, задающие неизменную токовую нагрузку. Значение постоянного напряжения на катодах дифференциальной пары Vk должно быть небольшим, следовательно, в качестве элемента, задающего постоянную токовую нагрузку, (элемента неизменяющегося тока) вполне возможно и даже целесообразно использовать полупроводниковый прибор.

Для второго дифференциального усилителя, как уже говорилось выше, необходим источник высоковольтного питания с напряжением более 500 В, следовательно, вероятное значение напряжения смещения между сеткой и катодом Vgk для используемого типа ламп должно быть порядка —10 В (ориентируясь по их статическим характеристикам). Это напряжение является достаточным без использования дополнительного источника питания для работы каскада, задающего постоянную токовую нагрузку (то есть образующего активную цепь неизменяющегося тока). К сожалению, первый каскад должен иметь достаточно небольшое по величине высоковольтное напряжение и, следовательно, недостаточное для применения каскада значение напряжения смещения Vgk, поэтому, использование полупроводникового элемента типа 334Z в качестве задающего постоянную токовую нагрузку, являлось бы наиболее удобным. Однако, полупроводниковый прибор типа 334Z имеет максимальное значение рабочего тока 10 мА, тогда как использование схемы каскада обеспечивало бы любое необходимое значение тока нагрузки. Таким образом, на выбор рабочих точек лампы уже накладывается ряд ограничений.

Максимальное значение анодного напряжения и источник положительного высоковольтного питания

Так как была выбрана схема непосредственной связи катодных повторителей с сеточными цепями выходных ламп, то напряжения на катодах повторителей будут порядка —82 В, а точное их значение будет определяться типом ламп. Если аноды катодных повторителей соединены с высоковольтным источником питания выходного каскада, то напряжение, приложенное между анодом и катодом, будет равно Vak = 482 В. Это значение превышает предельно-допустимое, которое даже для наиболее электрически прочных модификаций ламп GTA или GTB семейства *SN7 равно Va(max) = 450 В. Но данная проблема не является такой уж неразрешимой, так как нет необходимости, чтобы на катодном повторителе размах амплитуд составлял 482 В пикового значения, следовательно, можно снизить положительное напряжение источника питания этого каскада до 160 В, что снизит напряжение между анодом и катодом лампы Vak до значения примерно 250 В (учитывая двухполярное питание каскада, которое уже обсуждалось выше) допуская этим самым использование любой из ламп семейства *SN7/*N7.

Далее необходимо рассмотреть величину постоянного напряжения смещения выходного каскада. Высокие значения крутизны gm для выбранных ламп выходного каскада (безразлично, 13Е1, либо группы ламп EL34) означает, что ток выходного каскада крайне чувствителен к изменениям напряжения смещения между сеткой и катодом Vgk, а значение 30 мА/В является чрезвычайно высоким показателем для крутизны приемо-усилительной лампы, пусть даже и мощной. Данное значение просто указывает на недопустимость дрейфа напряжения сеточного смещения. Так как цепи предоконечного каскада усиления непосредственно связаны по постоянной составляющей от сеток выходных ламп до анодов второго дифференциального усилителя, изменения значения их анодного напряжения Va потенциально может не лучшим образом повлиять на работу выходных ламп, так как они по определению работают примерно при максимальной анодной мощности Ра(max)

Рассмотрение режима работы схемы по постоянному току, позволяет сделать рекомендацию, что для дифференциальных усилителей требуются общие сопротивления цепи питания, задающие постоянную токовую нагрузку. Так как дифференциальные каскады разрабатываемого усилителя имеют анодные нагрузки в виде постоянных резисторов, то из закона Ома следует, что неизменное значение анодного напряжения Va может быть достигнуто за счет стабилизации постоянного положительного напряжения 160 В источника питания. Разработка схемы уже подошла к точке, когда необходимо обеспечить безукоризненную работу стабилизатора источника высоковольтного питания. Один взгляд на полную принципиальную схему стабилизированного источника высоковольтного питания, как правило приводит в трепет. Кроме этого следует еще иметь в виду, что блок высоковольтного питания с ламповым стабилизатор намного дороже, чем обычный блок питания, содержащий лишь выпрямитель и сглаживающий фильтр и, даже, чем блок питания со стабилизатором на полупроводниковых приборах. В этой связи представляется, что применение лампового стабилизатора, возможно, не совсем целесообразно (в том числе учитывая и значительный долговременный уход по постоянной составляющей из-за ступенчатого изменения значений опорных напряжений неоновых стабилизаторов), поэтому в рассматриваемой разработке будет использован полупроводниковый высоковольтный стабилизатор.

 

 

 

Информация

 

Продолжение

Так как катодные повторители охвачены 100% отрицательной обратной связью, они вносят очень небольшие искажения по сравнению со вторым дифференциальным усилителем, но так как на них падает примерно 8 В общего напряжения смещения между сеткой и катодом Vgk, то они изменяют величину анодного напряжения второго дифференциального усилителя с —82 В до значения —90 В относительно потенциала общего провода (не забывая о том. что питания каскада двухполярное, см. выше). Так как от второго дифференциального усилителя требуется соблюдение максимальной линейности при всех амплитудах усиливаемого напряжения, включая пиковые, то источник отрицательной полярности рассматриваемой двухполярной системы питания, должен подбираться с учетом максимального размаха напряжения между катодом и анодом, которое составляет 260 В. Таким образом величина отрицательного (относительно потенциала общего провода) высокого напряжения должна быть —350 В. Величина отрицательного напряжения вовсе не является критической и не требует стабилизации, так его изменения просто приводят к изменению напряжения между анодом и катодом ламп дифференциальной пары Vak, не приводя к изменению значения их анодного тока Iа.

Несмотря на то, что не требуется поддержания точного значения отрицательного высокого напряжения, необходимо, чтобы этот источник напряжения был весьма надежным. Его неисправность может привести к положительному смещению на сетках выходных ламп, а это приведет к быстрому выходу последних из строя из-за выделения недопустимой тепловой мощности на аноде, возникающей в следствие значительного возрастания анодных токов. Итак, отсутствие необходимости стабилизировать отрицательное высокое напряжение дает преимущество для повышения надежности. Тем ни менее, в выходном каскаде применяются высоковольтные плавкие предохранители на случай неисправности источника отрицательного высоковольтного напряжения.

 
 
Сайт создан в системе uCoz