Содержание

Общие сведения,
классификация
Устройство и работа диода
Устройство и работа триода
Электронная эмиссия
Термоэлектронные катоды
Особенности устройства
электронных ламп
Физические процессы
Закон степени трех вторых
Анодная характеристика
Параметры
Рабочий режим. Применение
диода для выпрямления
переменного тока
Основные типы
Физические процессы
Токораспределение
Действующее напряжение и
закон степени трех вторых
Характеристики
Параметры
Особенности
Усилительный каскад с
триодом
Параметры усилительного
каскада
Аналитический расчет и
эквивалентные схемы
усилительного каскада
Графоаналитический расчет
режима усиления
Генератор с триодом
Межэлектродные емкости
Каскады с общей сеткой и
общим анодом
Недостатки триодов
Основные типы приемно-
усилительных триодов
Устройство и работа тетрода
Устройство и работа пентода
Схемы включения тетродов
и пентодов
Характеристики тетродов
и пентодов
Параметры тетродов и
пентодов
Межэлектродные емкости
тетродов и пентодов
Устройство и работа
лучевого тетрода
Характеристики и параметры
лучевого тетрода
Рабочий режим тетродов
и пентодов
Пентоды переменной
крутизны
Краткие сведения о
различных типах
тетродов и пентодов
Специальные лампы
Общие сведения
Электростатические
электронно-лучевые трубки
Магнитные электронно-
лучевые трубки
Люминесцентный экран
Краткие сведения о
различных электронно-
лучевых трубках
Электрический разряд
в газах
Тлеющий разряд
Стабилитроны
Тиратроны тлеющего разряда
Индикаторные приборы
Дисплеи
Краткие сведения о
различных газоразрядных
приборах
Фотоэлектронная эмиссия
Электровакуумные
фотоэлементы
Фотоэлектронные умножители
Причины собственных шумов
Шумовые параметры
Межэлектродные емкости
и индуктивности выводов
Инерция электронов
Наведенные токи в
цепях электродов
Входное сопротивление
и потери энергии
Импульсный режим
Основные типы электронных
ламп для СВЧ
Общие сведения
Пролетный клистрон
Отражательный клистрон
Магнетрон
Лампы бегущей и
обратной волны
Амплитрон и карматрон
Надежность и испытание
электровакуумных приборов
Усилитель на триоде
с общим катодом
Ограничения по выбору
рабочей точки
Режим в рабочей точке
Катодное смещение
Выбор величины
сопротивления резистора
в цепи сетки
Выбор выходного
разделительного
конденсатора
Вредное влияние проходной
емкости лампы и пути
его уменьшения
Применение
экранированных ламп
Каскод (каскодная схема)
Катодный повторитель
Каскад с общим катодом
как приемник
неизменяющегося тока
Пентоды в качестве
приемников
неизменяющегося тока
Катодный повторитель
с активной нагрузкой
Катодный повторитель Уайта
μ-повторитель
Выбор верхней лампы для
μ -повторителя
Параллельно управляемый
двухламповый усилитель
(SRPP)
β-повторитель
Дифференциальная пара
(дифференциальный каскад)
Коэффициент реакции
питающего напряжения
(PSRR)
дифференциальной пары
Полупроводниковые
приемники неизменяющегося
тока для
дифференциальной пары
Использование транзисторов
в качестве активной нагрузки
для электронных ламп
Классификация искажений.
Принципы оценки линейных
искажений
Принципы измерения
нелинейных искажений
Измерение и интерпретация
искажений
Совершенствование
измерений нелинейных
гармонических искажений
Цифровая обработка сигналов
Особенности проектирования
усилителей с малыми
искажениями
Работа с сеточным током
и нелинейные искажения
Уменьшение искажений
подавлением (компенсацией)
Проблемы смещения
по постоянному току
Выбор электронной лампы по
критерию низких искажений
Проблема сопряжения одного
каскада со следующим
Усилитель класса А для
электромагнитных головных
телефонов с непосредств.
междукаскадной связью
Радиокомпоненты -
Общие сведения
Ряды стандартизованных
значений сопротивлений
Металлизированные
пленочные резисторы
Проволочные резисторы
Конденсаторы -
Общие сведения
Металлические конденсаторы
с воздушным диэлектриком
Пленочные конденсаторы,
изготовленные
металлизацией диэлектрика
Алюминиевые
электролитические
конденсаторы
Основные вопросы,
возникающие при
выборе конденсатора
Общие сведения о
катушках индуктивности
Трансформаторы -
Общие сведения
Трансформаторы.
Намагничивание и потери
Модели трансформаторов
Почему необходимо
использовать трансформаторы
Определение параметров
неизвестного трансформатора
Основные виды
источников питания
Выпрямление переменного
тока
Одиночный накопительный
конденсатор в роли
сглаживающего элемента
Влияние напряжения
пульсаций на выходное
напряжение
Насыщение сердечника
трансформатора
Критерии выбора силового
трансформатора
Источник питания со
сглаживающим дросселем
Номинальное значение
тока дросселя
Выбросы тока и
демпфирующие элементы
Использование накопительного
конденсатора для снижения
высоковольтного напряжения
Частотные характеристики
используемых на практике
LC-фильтров
Широкополосная фильтрация
Выпрямители с умножением
(умножители) напряжения
Классическая схема
последовательного
стабилизатора
Двухтранзисторная схема
последовательного
стабилизатора
Стабилизатор цепи сеточного
смещения с регулируемым
выходным напряжением
Источники питания низкого
напряжения и синфазный шум
Ламповый стабилизатор
напряжения
Способы увеличения
выходного тока стабилизатора
Коэффициент режекции
источника питания
Включение сглаживающих
конденсаторов
Перенапряжения при
включении схемы
Составление предварительной
схемы блока питания
Высоковольтный выпрямитель
и стабилизатор
Особенности смещения
подогревателей ламп
Схема улучшенного
источника питания
Рабочий режим
Увеличение максимально
допустимого Vrrm
Выходной каскад класса А
с несимметричным выходом
Особенности акустических
систем
Неидеальности
трансформаторов
Режимы работы усилительных
приборов. Классы усилителей
Двухтактный выходной каскад
Выходной каскад по
ультралинейной схеме
Трансформаторный катодный
повторитель
Усилители без выходного
трансформатора
Составляющие блока
усилителя мощности
Предоконечный каскад блока
усилителя мощности
Фазоинверсный каскад
Дифференциальный усилитель
или пара с катодной связью
«Согласованный»
фазоинвертор
Общие проблемы
устойчивости усилителей
Подавление первой
доминанты ВЧ составляющей
Низкочастотное
самовозбуждение усилителя
Усилитель Williamson
Усилитель Milliard 5-20
Усилитель Quad II
Выбор выходной лампы
Выбор статической рабочей
точки с учетом Pвых и КНИ
Точное определение
выходного трансформатора
Особенность выпрямление
высоковольтного напряжения
Варианты применения
стабилизатора ВВ напряжения
Требования к каскаду
предоконечного усиления
Определение рабочей точки
предоконечного каскада
Проверка работоспособности
усилителя
Пример разработки
двухтактного УМ
Оптимизация входного и
фазоинверсного каскадов
Расчет R катодного смещения
лампы и R обратной связи
Выбор элементов
оконечного каскада
Разработка усилителей
мощностью более 10 Вт
Активные кроссоверы
и схема Зобеля
Выбор лампы для
оконечного каскада
Требования к предоконечному
каскаду усиления
Источники питания и
постоянная токовая нагрузка
Второй дифференциальный
усилитель и выходной каскад
Первый дифференциальный
усилитель и линейность х-ки
Каскодная схема постоянной
токовой нагрузки
Постоянная токовая нагрузка
первого диф. каскада
Элементы, повышающие ВЧ
устойчивость. Итоговая схема
Схема источника питания
«Потомок от усилителя Beast»
Расчет уровня фонового
шума от ИП
Особенности цифрового
сигнала от компакт-диска
Требования к предусилителю
Технические требования
к линейному каскаду
Традиционный линейный
каскад
Пути достижения заданных
требований и выбор лампы
Основные проблемы
регулирования громкости
Переключаемые аттенюаторы
Расчет переключаемого
аттенюатора
Табличные вычисления для
расчета регулятора громкости
Светочувствительные
резисторы и громкость
Входной переключатель
Частотный корректор RIAA
Влияние провода
звукоснимателя
Требования к блоку
частотной коррекции
Метод частотной коррекции
стандарта RIAA
Раздельное выравнивание
характеристики RIAA
Шумы и влияние входной
емкости входного каскада
Учет собственных
шумов лампы
Улучшение шумовых
характеристик с RIAA
Расчет элементов на 75 мкс
Параметры цепей на
3180 мкс и 318 мкс
Симметричный вход и
подключение звукоснимателя
Симметричный предусилитель
Возможности исключения
линейного каскада
Вариант RIAA с исполь-
зованием лампы типа ЕС8010
Оптимизация характеристик
входного трансформатора
Анализ работы блока RIAA
Практические методы
настройки блока RIAA
Линейный каскад
О межблочных и
акустических кабелях
 
 

Совершенствование измерений нелинейных гармонических искажений

Общие замечания

На заре развития техники ламповых усилителей, классические измерения нелинейных гармонических искажений проводились путем подачи на вход гармонического колебания на частоте 1 кГц, подавления основного тона 1 кГц на выходе усилителя, и измерения амплитуду оставшегося, так называемого «остаточного» сигнала (то есть высших гармоник). Для ламповых усилителей того времени эти измерения были вполне достаточными. Позднее, особенно по мере внедрения транзисторных усилителей, эти измерения справедливо критиковались, так как они не учитывают весовой вклад отдельных гармоник в общую картину нелинейного продукта, их субъективное воздействие и ряд других факторов.

Весовая оценка гармоник

В различное время выдвигались разные предложения для весовой оценки уровней отдельных гармоник, чтобы корректно суммировать мощности гармоник и дать единую картину измерения субъективных искажений. Такая оценка учитывает тот факт, что человеческое ухо по разному реагирует на разные гармоники, возникающие в следствие нелинейных искажений усиливаемого сигнала.

В 1950 году Шортер (Shorter) предложил, чтобы весовая оценка уровня гармоник производилась путем их домножения на коэффициент n2/4 (где «n» равно номеру гармоники), то есть в относительных единицах:

 

Поскольку, частотный интервал от n до 2n равен одной октаве, таким образом, градиент дБ/октава будет равен:

Таким образом, вместо того, чтобы измерять амплитуды отдельных гармоник и вычислять СКГ, можно применить простейший измеритель нелинейных искажений, по критерию повышения уровня отклика на 12 дБ/октава. Чтобы эти измерения были сопоставимы с измерениями, выполненными стандартным измерительным прибором, измеряющим вторую гармонику при подаче на вход гармонического колебания с частотой 1 кГц, будет необходим фильтр с коэффициентом передачи 0 дБ на 2 кГц. Отметим, что указанные требования к полосе пропускания фильтра и его коэффициенту передачи критичны, и означают, что весовые измерения искажений являются верными только для обозначенной основной частоты 1 кГц.

Тем не менее, у метода весовой оценки гармоник с коэффициентом n2 /4 есть заметный недостаток. В рассмотренном выше примере измерения на частоте 1 кГц с фильтром, обеспечивающим коэффициент передачи на частоте 2 кГц, будет возникать значительная ошибка в уровнях высших гармоник, в следствие неравномерности АЧХ фильтра. Поскольку целью весовой оценки гармоник является согласование результатов измерения с субъективным восприятием искажений, то чаще всего для проведения подобных измерений требуется существенное усложнение фильтров, поскольку все гармоники на частотах вплоть до 20 кГц и более попадают в диапазон слышимости человеческого уха.

Хотя рекомендация Шортера успешно ранжирует измеренные искажения в зависимости от их субъективного восприятия, этот тест требует определенных корректив. В первую очередь это касается упомянутого выше фильтра гармоник, АЧХ которого должна как раз учитывать субъективную чувствительность уха к различным гармоникам.

Питер Скиров (Peter Skirrow) из компании Lindos Electronics приводит доводы, что нелинейные искажения должны измеряться на основной частоте 1 кГц, с использованием взвешивающий фильтр типа CCIR468-2, так как частотная характеристика этого фильтра была определена по субъективному восприятию гармоник на различных частотах. В общих чертах, CCIR468-2 создает подъем АЧХ по закону 6 дБ/октава, имеет коэффициент передачи ОдБ на 1 кГц, и пик 12 дБ на 6,3 кГц, после которого достаточно резко падает. АЧХ такого фильтра приведена на рис. 4.2.

Особенности детектирования гармоник

Итак, исходный гармонический сигнал при прохождении через усилитель, вносящий нелинейные искажения, обогащается высшими гармониками. Значит, если из выходного сигнала испытуемого усилителя удалить (отфильтровать) основной тон (то есть первую гармонику), на выходе фильтра останется только продукт нелинейных искажений — высшие гармоники исходного гармонического колебания. Как измерить амплитуду этого остатка? Это не такой легкий вопрос, как кажется изначально, но если измерение произвести корректно, то на его основе будет легко оценить нелинейные искажения усилителя. Возможно, нужно измерить размах этого остаточного напряжения (Vпик-пик). Однако, не все так просто! Обратимся к рис. 4.3, где приведены временные диаграммы двух полигармонических процессов, включающих все нечетные гармоники с первой по седьмую.

 

Частотная характеристика взвешивающего фильтра CCIR468-2

Рис. 4.2 Частотная характеристика взвешивающего фильтра CCIR468-2

Влияние фазы на форму сигнала

Рис. 4.3 Влияние фазы на форму сигнала

Однако, частота основного тона (первая гармоника) второго процесса (нижний график), сдвинута по фазе на 90° относительно основного тона первого процесса (верхний график). Как нетрудно заметить из приведенных графиков, у этих двух процессов, имеющих одинаковый коэффициент гармоник, существенно различные амплитуда и размах (Vпик-пик). Для корректного детектирования высших гармоник, на практике применяется среднеквадратический метод вычисления мощности процесса с последующим вычислением его действующего напряжения. Таким образом, традиционные измерения искажений выполняются измерительным прибором с дорогостоящим детектором истинного среднеквадратичного значения, и в результатах измерения это обстоятельство отражается упоминанием СКГ в % действующего значения.

Измерение нелинейных искажений с упоминавшимся ранее взвешивающим фильтром типа CCIR468-2 обычно предполагает, что детектор должен обязательно регистрировать пиковые значения. Такой детектор будет хорошо отслеживать амплитуды шумовых всплесков. Искажение типа «ступенька» порождает короткие всплески (выбросы) в усиливаемом сигнале, которые практически не сказываются на величине действующего напряжения сигнала, но являются крайне раздражающими для субъективного восприятия. По этой причине измеритель пиковых значений CCIR468-2 был бы идеальным для обнаружения этих всплесков. Однако, CCIR468-2 не является достаточно идеальным, так как он требует упоминаемой выше коррекции коэффициента усиления, поэтому CCIR/ARM рекомендует снизить коэффициент усиления CCIR468-2 на 6 Дб, чтобы обеспечить 0 Дб усиления на частоте 2 кГц, что позволяет использовать его для весовой оценки искажений на частоте основного тона 1 кГц. Большая часть современных поверочных комплектов позволяют использование различных детекторов и взвешивающих фильтров, но выбор «CCIR/ARM» обеспечивает корректное проведение субъективно взвешенных измерений нелинейных искажений лишь на частоте основного тона1 кГц.

Учет шумовой составляющей при измерении нелинейных искажений

Хотя вышеописанный метод измерения искажений CCIR/ARM дешев и эффективен, но и он обладает недостатками. Качественно разработанный усилитель создает очень мало искажений. У таких высококачественных усилителей уровень гармоник, возникающих вследствие нелинейных искажений зачастую соизмерим с уровнем собственных шумов усилителя, совокупно генерируемых всеми его электронными компонентами. Когда выполняется измерение СКГ, используя измерительный прибор, детектирующий пиковое или средневзвешенное значение размаха остаточного сигнала высших гармоник, всегда есть опасение, что измерение будет неверным, так как оно не учитывает уровня шумов, соизмеримых с нелинейным продуктом.

Существует достаточно простой способ проверки, насколько измеряемый остаточный сигнал гармоник (выходной сигнал, в котором подавлен основной тон) свободен от шумов — посмотреть измеряемый остаточный сигнал гармоник на осциллографе. Если в наблюдаемом сигнале высших гармоник четко прослеживается периодическая последовательность, то собственными шумами можно в первом приближении пренебречь, и считать измеренный СКГ достаточно достоверным. Если же в наблюдаемом на экране осциллографа остаточном сигнале периодически повторяющуюся последовательность отследить трудно, то можно считать, что шумовая составляющая преобладает, и измерения СКГ будут заведомо ошибочными. Таким образом, все практические измерения нелинейных искажений, выполненные измерительным прибором, на самом деле измеряют СКГ + Ш (суммарный коэффициент гармоник + шум), и всегда нужно удостовериться, что интенсивность шумов недостаточно большая, чтобы им можно было пренебречь. Только в этом случае измерения будут корректными.

Большинство шумов имеют равномерное интенсивность на всех частотах, тогда как гармоники, возникающие вследствие нелинейных искажений возникают на вполне конкретных частотах. Измерительный прибор, детектирующий остаточный сигнал, — это широкополосное устройство, что означает, что он чувствителен ко всем частотам звукового диапазона. Таким образом, хотя интенсивность шума на конкретной частоте может быть довольно низкой, и, возможно, значительно меньше, чем амплитуда ближайших гармоник, при средневзвешенной оценке мощность шумов может легко подавить мощность гармоник. В то же время, знать СКГ необходимо, поскольку человеческое восприятие звука таково, что комбинация ухо/мозг очень четко реагирует именно на гармоники воспринимаемых звуков, выделяя их из широкополосного шума.

 

 

 

Информация

Метрологические приборы и поверочные установки и комплекты

Самая свежая прошивка для Samsung Galaxy S

СБП Скачать бесплатно программы

Электровелосипед

GSM сигнализация из сотового телефона

 

Продолжение

Общие сведения о цифровом представлении сигналов и аналого-цифровом преобразовании

Аналоговый сигнал является непрерывно изменяющимся во времени процессом, причем величина его напряжения или тока может плавно изменяться, принимая любые промежуточные значения в интервале от минимального до максимального. В отличие от аналогового, цифровой сигнал несет информацию о величине (напряжении, токе) исходного сообщения лишь в фиксированные моменты времени, а сами его значения также могут принимать только строго фиксированные дискретные значения, которые обычно представляются в виде двоичных чисел. В качестве некоторой наглядной модели, можно обратиться к процессу измерения какой-либо зависимости. Построение графика по нескольким точкам измерений — грубая модель аналогово-цифрового преобразования, поскольку отдельные измерения являются фиксированными значениями. Представление аналоговых сигналов в цифровом виде (аналого-цифровое преобразование), когда фиксированные значения исходного сигнала, взятые через определенные промежутки времени, представляются в виде двоичных чисел очень удобно, поскольку позволяет применить к такому сигналу математическую обработку силами современной вычислительной техники, оперирующей как раз двоичными числами.

Аналогово-цифровое преобразование (АЦП) является сложным процессом, состоящим из двух частей. Первая процедура — фиксация процесса через определенные промежутки времени, называемая дискретизацией. Вторая процедура — приведение значения зафиксированного параметра к одному из разрешенных дискретных уровней, называемая квантованием. На практике существуют различные алгоритмы этих процедур, проводимых в той или иной последова-тельности. После преобразования, дискретные значения заменяются определенным двоичным числом (в зависимости от конкретного значения дискретного уровня). Этот процесс называется кодированием.

Процесс аналого-цифрового преобразования также часто называют импульсно-кодовой модуляцией (ИКМ или PCM — Pulse Code Modulation).

Дискретизация. Теорема Котельникова - Найквиста

Процесс фиксации параметров исходного аналогового сигнала (подвергаемого АЦП) через определенные равные интервалы времени называется дискретизацией. На

практике очень важно знать, какова требуется частота повторения выборки (фиксации параметров). Эта частота называется частотой дискретизации. Например, если делать 96000 выборок в секунду, то частота дискретизации равняется 96 тыс. Выборок/с или 96 кГц. Для того, чтобы непрерывный аналоговый сигнал заменить последова-тельностью его отдельных значений (отсчетов), взятых (зафиксированных) через определенные равные промежутки времени, без потери полезной информации, необходимо выполнить требования теоремы Котельникова — Найквиста. Эта теорема гласит, что для безошибочного восстановления аналогового сигнала из его дискретных отсчетов, частота дискретизации должна быть как минимум вдвое больше верхней (наибольшей) частоты исходного аналогового сигнала. Таким образом, на любой из частот исходного сигнала, выборка отсчета должна производиться не менее, чем дважды за период. Работа всех устройств, использующих цифровое представление аналоговых сигналов (например, проигрывателей компакт-дисков) базируется на этой фундаментальной теореме.

 
 
Сайт создан в системе uCoz