Содержание

Общие сведения,
классификация
Устройство и работа диода
Устройство и работа триода
Электронная эмиссия
Термоэлектронные катоды
Особенности устройства
электронных ламп
Физические процессы
Закон степени трех вторых
Анодная характеристика
Параметры
Рабочий режим. Применение
диода для выпрямления
переменного тока
Основные типы
Физические процессы
Токораспределение
Действующее напряжение и
закон степени трех вторых
Характеристики
Параметры
Особенности
Усилительный каскад с
триодом
Параметры усилительного
каскада
Аналитический расчет и
эквивалентные схемы
усилительного каскада
Графоаналитический расчет
режима усиления
Генератор с триодом
Межэлектродные емкости
Каскады с общей сеткой и
общим анодом
Недостатки триодов
Основные типы приемно-
усилительных триодов
Устройство и работа тетрода
Устройство и работа пентода
Схемы включения тетродов
и пентодов
Характеристики тетродов
и пентодов
Параметры тетродов и
пентодов
Межэлектродные емкости
тетродов и пентодов
Устройство и работа
лучевого тетрода
Характеристики и параметры
лучевого тетрода
Рабочий режим тетродов
и пентодов
Пентоды переменной
крутизны
Краткие сведения о
различных типах
тетродов и пентодов
Специальные лампы
Общие сведения
Электростатические
электронно-лучевые трубки
Магнитные электронно-
лучевые трубки
Люминесцентный экран
Краткие сведения о
различных электронно-
лучевых трубках
Электрический разряд
в газах
Тлеющий разряд
Стабилитроны
Тиратроны тлеющего разряда
Индикаторные приборы
Дисплеи
Краткие сведения о
различных газоразрядных
приборах
Фотоэлектронная эмиссия
Электровакуумные
фотоэлементы
Фотоэлектронные умножители
Причины собственных шумов
Шумовые параметры
Межэлектродные емкости
и индуктивности выводов
Инерция электронов
Наведенные токи в
цепях электродов
Входное сопротивление
и потери энергии
Импульсный режим
Основные типы электронных
ламп для СВЧ
Общие сведения
Пролетный клистрон
Отражательный клистрон
Магнетрон
Лампы бегущей и
обратной волны
Амплитрон и карматрон
Надежность и испытание
электровакуумных приборов
Усилитель на триоде
с общим катодом
Ограничения по выбору
рабочей точки
Режим в рабочей точке
Катодное смещение
Выбор величины
сопротивления резистора
в цепи сетки
Выбор выходного
разделительного
конденсатора
Вредное влияние проходной
емкости лампы и пути
его уменьшения
Применение
экранированных ламп
Каскод (каскодная схема)
Катодный повторитель
Каскад с общим катодом
как приемник
неизменяющегося тока
Пентоды в качестве
приемников
неизменяющегося тока
Катодный повторитель
с активной нагрузкой
Катодный повторитель Уайта
μ-повторитель
Выбор верхней лампы для
μ -повторителя
Параллельно управляемый
двухламповый усилитель
(SRPP)
β-повторитель
Дифференциальная пара
(дифференциальный каскад)
Коэффициент реакции
питающего напряжения
(PSRR)
дифференциальной пары
Полупроводниковые
приемники неизменяющегося
тока для
дифференциальной пары
Использование транзисторов
в качестве активной нагрузки
для электронных ламп
Классификация искажений.
Принципы оценки линейных
искажений
Принципы измерения
нелинейных искажений
Измерение и интерпретация
искажений
Совершенствование
измерений нелинейных
гармонических искажений
Цифровая обработка сигналов
Особенности проектирования
усилителей с малыми
искажениями
Работа с сеточным током
и нелинейные искажения
Уменьшение искажений
подавлением (компенсацией)
Проблемы смещения
по постоянному току
Выбор электронной лампы по
критерию низких искажений
Проблема сопряжения одного
каскада со следующим
Усилитель класса А для
электромагнитных головных
телефонов с непосредств.
междукаскадной связью
Радиокомпоненты -
Общие сведения
Ряды стандартизованных
значений сопротивлений
Металлизированные
пленочные резисторы
Проволочные резисторы
Конденсаторы -
Общие сведения
Металлические конденсаторы
с воздушным диэлектриком
Пленочные конденсаторы,
изготовленные
металлизацией диэлектрика
Алюминиевые
электролитические
конденсаторы
Основные вопросы,
возникающие при
выборе конденсатора
Общие сведения о
катушках индуктивности
Трансформаторы -
Общие сведения
Трансформаторы.
Намагничивание и потери
Модели трансформаторов
Почему необходимо
использовать трансформаторы
Определение параметров
неизвестного трансформатора
Основные виды
источников питания
Выпрямление переменного
тока
Одиночный накопительный
конденсатор в роли
сглаживающего элемента
Влияние напряжения
пульсаций на выходное
напряжение
Насыщение сердечника
трансформатора
Критерии выбора силового
трансформатора
Источник питания со
сглаживающим дросселем
Номинальное значение
тока дросселя
Выбросы тока и
демпфирующие элементы
Использование накопительного
конденсатора для снижения
высоковольтного напряжения
Частотные характеристики
используемых на практике
LC-фильтров
Широкополосная фильтрация
Выпрямители с умножением
(умножители) напряжения
Классическая схема
последовательного
стабилизатора
Двухтранзисторная схема
последовательного
стабилизатора
Стабилизатор цепи сеточного
смещения с регулируемым
выходным напряжением
Источники питания низкого
напряжения и синфазный шум
Ламповый стабилизатор
напряжения
Способы увеличения
выходного тока стабилизатора
Коэффициент режекции
источника питания
Включение сглаживающих
конденсаторов
Перенапряжения при
включении схемы
Составление предварительной
схемы блока питания
Высоковольтный выпрямитель
и стабилизатор
Особенности смещения
подогревателей ламп
Схема улучшенного
источника питания
Рабочий режим
Увеличение максимально
допустимого Vrrm
Выходной каскад класса А
с несимметричным выходом
Особенности акустических
систем
Неидеальности
трансформаторов
Режимы работы усилительных
приборов. Классы усилителей
Двухтактный выходной каскад
Выходной каскад по
ультралинейной схеме
Трансформаторный катодный
повторитель
Усилители без выходного
трансформатора
Составляющие блока
усилителя мощности
Предоконечный каскад блока
усилителя мощности
Фазоинверсный каскад
Дифференциальный усилитель
или пара с катодной связью
«Согласованный»
фазоинвертор
Общие проблемы
устойчивости усилителей
Подавление первой
доминанты ВЧ составляющей
Низкочастотное
самовозбуждение усилителя
Усилитель Williamson
Усилитель Milliard 5-20
Усилитель Quad II
Выбор выходной лампы
Выбор статической рабочей
точки с учетом Pвых и КНИ
Точное определение
выходного трансформатора
Особенность выпрямление
высоковольтного напряжения
Варианты применения
стабилизатора ВВ напряжения
Требования к каскаду
предоконечного усиления
Определение рабочей точки
предоконечного каскада
Проверка работоспособности
усилителя
Пример разработки
двухтактного УМ
Оптимизация входного и
фазоинверсного каскадов
Расчет R катодного смещения
лампы и R обратной связи
Выбор элементов
оконечного каскада
Разработка усилителей
мощностью более 10 Вт
Активные кроссоверы
и схема Зобеля
Выбор лампы для
оконечного каскада
Требования к предоконечному
каскаду усиления
Источники питания и
постоянная токовая нагрузка
Второй дифференциальный
усилитель и выходной каскад
Первый дифференциальный
усилитель и линейность х-ки
Каскодная схема постоянной
токовой нагрузки
Постоянная токовая нагрузка
первого диф. каскада
Элементы, повышающие ВЧ
устойчивость. Итоговая схема
Схема источника питания
«Потомок от усилителя Beast»
Расчет уровня фонового
шума от ИП
Особенности цифрового
сигнала от компакт-диска
Требования к предусилителю
Технические требования
к линейному каскаду
Традиционный линейный
каскад
Пути достижения заданных
требований и выбор лампы
Основные проблемы
регулирования громкости
Переключаемые аттенюаторы
Расчет переключаемого
аттенюатора
Табличные вычисления для
расчета регулятора громкости
Светочувствительные
резисторы и громкость
Входной переключатель
Частотный корректор RIAA
Влияние провода
звукоснимателя
Требования к блоку
частотной коррекции
Метод частотной коррекции
стандарта RIAA
Раздельное выравнивание
характеристики RIAA
Шумы и влияние входной
емкости входного каскада
Учет собственных
шумов лампы
Улучшение шумовых
характеристик с RIAA
Расчет элементов на 75 мкс
Параметры цепей на
3180 мкс и 318 мкс
Симметричный вход и
подключение звукоснимателя
Симметричный предусилитель
Возможности исключения
линейного каскада
Вариант RIAA с исполь-
зованием лампы типа ЕС8010
Оптимизация характеристик
входного трансформатора
Анализ работы блока RIAA
Практические методы
настройки блока RIAA
Линейный каскад
О межблочных и
акустических кабелях

 

 
 

Усилитель Quad II

Усилитель Quad II отличает необычность разработки, которая, на первый взгляд не кажется многообещающей, но, тем ни менее, он работает, явно используя при этом эффект синергетики, которая обеспечивает согласованное взаимодействие отдельных и казалось бы разрозненных частей системы.

В данной разработке (рис. 7.26) фазоинвертор был использован не только в оконечном каскаде, но также и во входном каскаде. С целью обеспечить необходимый коэффициент усиления, в схеме использованы пентоды. Следовательно, выходное сопротивление имеет высокое значение, так же как и входные шумы. Для того, чтобы все ухудшить окончательно, используется вариант инвертирующего фазовращателя. Выходной каскад охвачен локальной обратной связью, требующей увеличенное значение напряжения возбуждения.

Вспомогательная схема стабилизации напряжения смещения выходного каскада

Рис. 7.25 Вспомогательная схема стабилизации напряжения смещения выходного каскада

В выходном каскаде используется пара лучевых тетродов типа KJ66 с поделенной в соотношении 9,375:1 анодной и катодной нагрузками. Схема включения катода, таким образом, обеспечивает слабый управляющий сигнал для громкоговорителя и может рассматриваться в качестве последовательной обратной связи, действующей со стороны выходного трансформатора.

Однако, так как катодный ток в выходном трансформаторе складывается из анодного тока и тока экранирующей сетки, было установлено, что такое суммирование снижает искажения третьей гармоники на дополнительные 8 дБ по отношению к значению, которое обеспечивает отрицательная обратная связь.

Влияние этой обратной связи на выходное сопротивление совершенно противоположно интуитивно ожидаемому эффекту. Если просто оставить катодный резистор незашунтированным, то возникнет последовательная обратная связь, которая увеличивает эквивалентное анодное сопротивление rа, тогда как трансформаторная обратная связь уменьшает значение rа. Это объясняется очень просто, если в качестве нагрузки рассмотреть режим короткого замыкания. Совершенно очевидно, что выходной каскад не будет в состоянии отдавать какое-либо напряжение в такую нагрузку, но так же совершенно очевидно, с другой стороны, что будет отсутствовать и сигнал обратной связи, действующий на катоды. Управляющим сигналом на сетке будет полный входной сигнал, а не разность входного сигнала и сигнала обратной связи; следовательно, выходной каскад будет поддаваться управлению значительно труднее, так как он будет стремиться отдать мощность в короткозамкнутую нагрузку. Такой режим работы будет совершенно эквивалентен снижению выходного сопротивления, и новое значение выходного сопротивления может быть определено с использованием обычных соотношений для обратной связи.

Первичные обмотки трансформатора по своему сопротивлению эквиваленты межанодному сопротивлению 3 кОм. В случае тетродов такое низкое значение анодной нагрузки приводит к существенному снижению искажений третьей гармоники и увеличению доли второй гармоники, действие которой затем нейтрализуется в результате использования двухтактной схемы выходного каскада (при условии, что выходные лампы очень тщательно согласованы по параметрам и режимам).

В схеме применен принцип совместного использования автоматического смещения, следовательно, нет проблемы с осуществлением мер по созданию баланса анодных токов, но следует ожидать увеличение искажений на низких частотах из-за насыщения сердечника трансформатора. В качестве курьеза можно отметить, что в схеме установлен катодный резистор, рассчитанный на рассеиваемую мощность всего 3 Вт, хотя в действительности на нем выделяется 3,8 Вт. Если в эксплуатируемом усилителе Quad II возникли сильные искажения, то очень вероятной причиной может оказаться выгоревший резистор цепи катодного смещения.

Даже при использовании пентодов схема, предусилительного каскада не обеспечивает очень высокого усиления, а входная чувствительность сравнительно невелика и при полной выходной мощности составляет 1,4 В. Такое значение входной чувствительности является просто великолепным для усилителя мощности, так как оно не только обеспечивает безукоризненную работу без дополнительных шумов (даже при использовании пентодов), но это также означает, что входной каскад намного менее восприимчив к фону переменного тока и шумам от входных кабелей или цепей подогрева катодов. По отношению сигнал-шум усилитель Quad II уступает только усилителю Williamson, у которого шумы ниже из-за использования во входном каскаде триода.

Усилитель Quad II

Рис. 7.26 Усилитель Quad II (с любезного разрешения Quad Electroacoustics Ltd)

Вопреки тому, что, являясь вариантом инвертирующего фазовращателя, входной каскад фазоинвертора не использует обратную связь для поддержания равновесия и его работа построена совсем иначе. Каждая выходная лампа должна иметь резистор сеточного смещения, поэтому вместо того, чтобы задавать дополнительную нагрузку для ламп предусилительного каскада, был сделан отвод сигнала от одного из них для подачи входного сигнала на нижнюю лампу фазоинвертора. С точки зрения теории следует, что если ослабление в цепи отвода равно усилению нижней лампы, то выходной сигнал фазоинвертора будет сбалансированным (уравновешенным). Но так как элементы схемы всегда имеют разброс параметров, то теоретические предпосылки не всегда исполняются и поэтому катоды двух ламп связаны между собой для улучшения баланса.

Каскады усилений, построенные на пентодах, имеют выходное сопротивление, которое примерно равно сопротивлению нагрузки RL. Так как величина нагрузки RL для входного фазоинверсно-предусилительного каскада в усилителе Quad составляет 180 Ом, то данное значение не будет достаточно адекватным для передачи сигнала на входной конденсатор выходного каскада, имеющего емкость примерно 30 пФ, и определяющих частоту среза значением примерно 30 кГц. Однако, причем частично из-за выходного трансформатора, это является частотой среза высокочастотной составляющей схемы и не представляет серьезной проблемы. Для каждой выходной лампы необходим размах двойного амплитудного напряжения примерно в 80Bpk-pk, который достаточно легко может быть обеспечен, так как для пентодов режим приближения 0 В достигается гораздо эффективнее по сравнению с триодами, а также потому, что в фильтрах высоковольтного источника питания используется LC-цепи вместо RC-цепей, что позволяет получить более высокие значения высоковольтного напряжения. Высоковольтный источник с LC-фильтром используется также для питания экранирующих сеток выходных ламп, которые к тому же обладают дополнительными преимуществами снижать фоновые шумы источника питания, так как анодный ток тетрода или пентода в значительно большей степени зависим от напряжения на экранирующей сетке, по сравнению с анодным напряжением.

Для пентодов экранирующая сетка обязательно должна иметь блокировку на землю по переменному току. Вместо того, чтобы для каждая из ламп типа EF86 устанавливать свой конденсатор, включенный на землю, между экранирующими сетками двух ламп включен общий конденсатор. Это обеспечивает сразу три преимущества:

• если бы использовались два отдельных конденсатора, то их включение было бы эффективным при их последовательном соединении и подключении центральной точки на землю. Так как на каждую лампу подаются равные, но противоположенные по фазе сигналы, то центральный вывод цепи имел бы всегда нулевой потенциал, даже будучи не подключенным к земле. Следовательно, можно

с легкостью отсоединить центральный вывод от земли, имея в результате два последовательно включенных конденсатора, которые затем можно заменить одним, имеющим половину значения емкости каждого;

• так как этот единый конденсатор подключен между двумя точками с равными потенциалами по постоянному току, то напряжение на нем будет гораздо меньше максимально допустимого напряжения относительно земли. Хотя это тоже самое, что рассматривать влияние условий отказа при определении максимально допустимого напряжения, поэтому нельзя расценивать данное преимущество очень уж значительным;

• включение экранирующих сеток каждой из ламп вместе по переменной составляющей помогает установить равновесие точно таким же образом, что и подключение катодов к одной точке.

Хотя замещение одного каскада, который объединил функции входного каскада, фазовращателя и предусилительного каскада, не позволило достичь показателей линейности, характерных для специально проектируемых каскадов, объединенный каскад имеет лучшие характеристики по сравнению со схемой усилителя Mullard, так как от него требуется меньшее усиление.

Обладая только простой схемой предусилительного каскада и выходным каскадом, охваченным петлей обратной связи, элегантный усилитель Quad II не имеет проблем с устойчивостью.

 

 

 

Информация

 

Продолжение

До сих пор предметами рассмотрения были отдельные каскады, функциональные блоки и классические конструкторские разработки, сделанные другими. Но гораздо полезнее один раз сделать что-то самому, чем сто раз наблюдать за работой других, поэтому пришло время использовать полученные знания и разработать усилитель своими силами.

Было высказано предположение, что старый добрый усилитель мог бы пойти на запчасти для ремонта других устройств только лишь благодаря наличию в нем трансформатора и шасси. К сожалению, этот тезис в настоящее время уже не так верен, потому что классические усилители хотя и продолжают быть похожими на своих сорокалетних предков, но затраты, связанные с заменой повторно используемых радиокомпонентов, которые в течение ближайших 10 лет могут отказать, делают подобный подход весьма проблематичным. В настоящее время проще, да и дешевле, собирать усилитель с использованием только новых деталей.

В начале уже упоминалось, что однотактные усилители мощности обладают существенными недостатками по сравнению с двухтактными. Тем не менее, существуют различные причины, по которым конструкции с несимметричным выходом были включены:

• автор считает, что однотактные усилители с несимметричным выходом, как отдельная ветвь эволюции, мог бы пригодиться в качестве прекрасного, но несколько архаичного опыта (без сомнений, отжившего свое, но все еще являющегося для ряда энтузиастов аргументом);

• когда автору был представлен на суд однотактный усилитель типа NOS6528, он понял, что сможет использовать его не только в качестве основы для стереофонического усилителя, но что он дополнительно получает в свое распоряжение приличный по параметрам силовой трансформатор, дроссели, выпрямители и высоковольтные трансформаторы. (Факт отказа от необходимости приобретения специально изготавливаемых под заказ двух выходных трансформаторов, полностью укладывается в эту логику автора);

• однотактный усилитель с несимметричным выходом имеет более простую электрическую схему по сравнению с двухтактным, поэтому он лучше подходит на роль первого опыта.

Однако, необходимо учесть следующее предупреждение. Для заданной выходной мощности однотактные усилители с несимметричным выходом значительно больше, массивнее и более дорогие по сравнению со своими двухтактными аналогами.

Разработка усилителя мощности начинается с определения необходимой выходной мощности, которая затем и определяет выбор выходной лампы, или нескольких ламп. К счастью, громкоговорители постепенно становятся все более чувствительными по мере того, как разработчики принимают во внимание преимущества обоснованного выбора для материала диффузора, поэтому мощность порядка 10 Вт, или даже чуть ниже, может превосходно удовлетворить потребности слушателя без необходимости прибегать к помощи высокоэффективных и дорогих разработок, например рупорных громкоговорителей.

 
 
Сайт создан в системе uCoz