Содержание

Общие сведения,
классификация
Устройство и работа диода
Устройство и работа триода
Электронная эмиссия
Термоэлектронные катоды
Особенности устройства
электронных ламп
Физические процессы
Закон степени трех вторых
Анодная характеристика
Параметры
Рабочий режим. Применение
диода для выпрямления
переменного тока
Основные типы
Физические процессы
Токораспределение
Действующее напряжение и
закон степени трех вторых
Характеристики
Параметры
Особенности
Усилительный каскад с
триодом
Параметры усилительного
каскада
Аналитический расчет и
эквивалентные схемы
усилительного каскада
Графоаналитический расчет
режима усиления
Генератор с триодом
Межэлектродные емкости
Каскады с общей сеткой и
общим анодом
Недостатки триодов
Основные типы приемно-
усилительных триодов
Устройство и работа тетрода
Устройство и работа пентода
Схемы включения тетродов
и пентодов
Характеристики тетродов
и пентодов
Параметры тетродов и
пентодов
Межэлектродные емкости
тетродов и пентодов
Устройство и работа
лучевого тетрода
Характеристики и параметры
лучевого тетрода
Рабочий режим тетродов
и пентодов
Пентоды переменной
крутизны
Краткие сведения о
различных типах
тетродов и пентодов
Специальные лампы
Общие сведения
Электростатические
электронно-лучевые трубки
Магнитные электронно-
лучевые трубки
Люминесцентный экран
Краткие сведения о
различных электронно-
лучевых трубках
Электрический разряд
в газах
Тлеющий разряд
Стабилитроны
Тиратроны тлеющего разряда
Индикаторные приборы
Дисплеи
Краткие сведения о
различных газоразрядных
приборах
Фотоэлектронная эмиссия
Электровакуумные
фотоэлементы
Фотоэлектронные умножители
Причины собственных шумов
Шумовые параметры
Межэлектродные емкости
и индуктивности выводов
Инерция электронов
Наведенные токи в
цепях электродов
Входное сопротивление
и потери энергии
Импульсный режим
Основные типы электронных
ламп для СВЧ
Общие сведения
Пролетный клистрон
Отражательный клистрон
Магнетрон
Лампы бегущей и
обратной волны
Амплитрон и карматрон
Надежность и испытание
электровакуумных приборов
Усилитель на триоде
с общим катодом
Ограничения по выбору
рабочей точки
Режим в рабочей точке
Катодное смещение
Выбор величины
сопротивления резистора
в цепи сетки
Выбор выходного
разделительного
конденсатора
Вредное влияние проходной
емкости лампы и пути
его уменьшения
Применение
экранированных ламп
Каскод (каскодная схема)
Катодный повторитель
Каскад с общим катодом
как приемник
неизменяющегося тока
Пентоды в качестве
приемников
неизменяющегося тока
Катодный повторитель
с активной нагрузкой
Катодный повторитель Уайта
μ-повторитель
Выбор верхней лампы для
μ -повторителя
Параллельно управляемый
двухламповый усилитель
(SRPP)
β-повторитель
Дифференциальная пара
(дифференциальный каскад)
Коэффициент реакции
питающего напряжения
(PSRR)
дифференциальной пары
Полупроводниковые
приемники неизменяющегося
тока для
дифференциальной пары
Использование транзисторов
в качестве активной нагрузки
для электронных ламп
Классификация искажений.
Принципы оценки линейных
искажений
Принципы измерения
нелинейных искажений
Измерение и интерпретация
искажений
Совершенствование
измерений нелинейных
гармонических искажений
Цифровая обработка сигналов
Особенности проектирования
усилителей с малыми
искажениями
Работа с сеточным током
и нелинейные искажения
Уменьшение искажений
подавлением (компенсацией)
Проблемы смещения
по постоянному току
Выбор электронной лампы по
критерию низких искажений
Проблема сопряжения одного
каскада со следующим
Усилитель класса А для
электромагнитных головных
телефонов с непосредств.
междукаскадной связью
Радиокомпоненты -
Общие сведения
Ряды стандартизованных
значений сопротивлений
Металлизированные
пленочные резисторы
Проволочные резисторы
Конденсаторы -
Общие сведения
Металлические конденсаторы
с воздушным диэлектриком
Пленочные конденсаторы,
изготовленные
металлизацией диэлектрика
Алюминиевые
электролитические
конденсаторы
Основные вопросы,
возникающие при
выборе конденсатора
Общие сведения о
катушках индуктивности
Трансформаторы -
Общие сведения
Трансформаторы.
Намагничивание и потери
Модели трансформаторов
Почему необходимо
использовать трансформаторы
Определение параметров
неизвестного трансформатора
Основные виды
источников питания
Выпрямление переменного
тока
Одиночный накопительный
конденсатор в роли
сглаживающего элемента
Влияние напряжения
пульсаций на выходное
напряжение
Насыщение сердечника
трансформатора
Критерии выбора силового
трансформатора
Источник питания со
сглаживающим дросселем
Номинальное значение
тока дросселя
Выбросы тока и
демпфирующие элементы
Использование накопительного
конденсатора для снижения
высоковольтного напряжения
Частотные характеристики
используемых на практике
LC-фильтров
Широкополосная фильтрация
Выпрямители с умножением
(умножители) напряжения
Классическая схема
последовательного
стабилизатора
Двухтранзисторная схема
последовательного
стабилизатора
Стабилизатор цепи сеточного
смещения с регулируемым
выходным напряжением
Источники питания низкого
напряжения и синфазный шум
Ламповый стабилизатор
напряжения
Способы увеличения
выходного тока стабилизатора
Коэффициент режекции
источника питания
Включение сглаживающих
конденсаторов
Перенапряжения при
включении схемы
Составление предварительной
схемы блока питания
Высоковольтный выпрямитель
и стабилизатор
Особенности смещения
подогревателей ламп
Схема улучшенного
источника питания
Рабочий режим
Увеличение максимально
допустимого Vrrm
Выходной каскад класса А
с несимметричным выходом
Особенности акустических
систем
Неидеальности
трансформаторов
Режимы работы усилительных
приборов. Классы усилителей
Двухтактный выходной каскад
Выходной каскад по
ультралинейной схеме
Трансформаторный катодный
повторитель
Усилители без выходного
трансформатора
Составляющие блока
усилителя мощности
Предоконечный каскад блока
усилителя мощности
Фазоинверсный каскад
Дифференциальный усилитель
или пара с катодной связью
«Согласованный»
фазоинвертор
Общие проблемы
устойчивости усилителей
Подавление первой
доминанты ВЧ составляющей
Низкочастотное
самовозбуждение усилителя
Усилитель Williamson
Усилитель Milliard 5-20
Усилитель Quad II
Выбор выходной лампы
Выбор статической рабочей
точки с учетом Pвых и КНИ
Точное определение
выходного трансформатора
Особенность выпрямление
высоковольтного напряжения
Варианты применения
стабилизатора ВВ напряжения
Требования к каскаду
предоконечного усиления
Определение рабочей точки
предоконечного каскада
Проверка работоспособности
усилителя
Пример разработки
двухтактного УМ
Оптимизация входного и
фазоинверсного каскадов
Расчет R катодного смещения
лампы и R обратной связи
Выбор элементов
оконечного каскада
Разработка усилителей
мощностью более 10 Вт
Активные кроссоверы
и схема Зобеля
Выбор лампы для
оконечного каскада
Требования к предоконечному
каскаду усиления
Источники питания и
постоянная токовая нагрузка
Второй дифференциальный
усилитель и выходной каскад
Первый дифференциальный
усилитель и линейность х-ки
Каскодная схема постоянной
токовой нагрузки
Постоянная токовая нагрузка
первого диф. каскада
Элементы, повышающие ВЧ
устойчивость. Итоговая схема
Схема источника питания
«Потомок от усилителя Beast»
Расчет уровня фонового
шума от ИП
Особенности цифрового
сигнала от компакт-диска
Требования к предусилителю
Технические требования
к линейному каскаду
Традиционный линейный
каскад
Пути достижения заданных
требований и выбор лампы
Основные проблемы
регулирования громкости
Переключаемые аттенюаторы
Расчет переключаемого
аттенюатора
Табличные вычисления для
расчета регулятора громкости
Светочувствительные
резисторы и громкость
Входной переключатель
Частотный корректор RIAA
Влияние провода
звукоснимателя
Требования к блоку
частотной коррекции
Метод частотной коррекции
стандарта RIAA
Раздельное выравнивание
характеристики RIAA
Шумы и влияние входной
емкости входного каскада
Учет собственных
шумов лампы
Улучшение шумовых
характеристик с RIAA
Расчет элементов на 75 мкс
Параметры цепей на
3180 мкс и 318 мкс
Симметричный вход и
подключение звукоснимателя
Симметричный предусилитель
Возможности исключения
линейного каскада
Вариант RIAA с исполь-
зованием лампы типа ЕС8010
Оптимизация характеристик
входного трансформатора
Анализ работы блока RIAA
Практические методы
настройки блока RIAA
Линейный каскад
О межблочных и
акустических кабелях

 

 
 

Характеристики

Характеристики триода при работе его на постоянном токе и без нагрузки называются статическими (обычно говорят просто «характеристики»). Действительные характеристики снимаются экспериментально. Они учитывают неодинаковость температуры в разных точках катода, неэквипотенциальность поверхности катода прямого накала, эффект Шоттки, дополнительный подогрев катода анодным током, начальную скорость электронов, контактную разность потенциалов, термо-ЭДС, возникающую при нагреве контакта различных металлов, и другие явления. Закон степени трех вторых все эти явления не учитывает.

Характеристики в справочниках являются средними, полученными на основе нескольких характеристик, снятых для различных экземпляров ламп данного типа. Поэтому пользование такими характеристиками дает погрешности.

Широко применяются характеристики, показывающие зависимость тока от сеточного напряжения при постоянном анодном напряжении:

iа = f(ug), ig = f(ug) и iк = f(ug)

при ua = const. (17.7)

Наиболее важны две первые зависимости. Характеристики, выражающие зависимость iа = f(ug) называются анодно-сеточными. А характеристики, соответствующие зависимости ig = f(ug), принято называть сеточными. Каждому значению анодного напряжения соответствует определенная характеристика. Следовательно, для каждого тока имеется семейство характеристик. Значения анодного напряжения для них берутся через определенные промежутки.

Другая группа характеристик показывает зависимость токов от анодного напряжения при постоянном сеточном напряжении:

iа = f(ua), ig = f(ua) и iк = f(ua)

при ug = const. (17.8)

Здесь наиболее важны анодные характеристики, выражающие зависимость iа = f(ua), а также сеточно-анодные характеристики, дающие зависимость ig = f(ua)

Характеристики триода для токов анода, сетки и катода

Рис. 17.1. Характеристики триода для токов анода, сетки и катода

 

В справочниках, как правило, приводятся семейства характеристик только для анодного и сеточного тока. Простым сложением их ординат можно построить характеристики для катодного тока. Для практических расчетов анодного тока достаточно иметь семейство либо анодно-сеточных, либо анодных характеристик. Анодно-сеточные характеристики нагляднее показывают управляющее действие сетки, и их иногда называют управляющими. Зато с анодными характеристиками расчеты проще и точнее.

На рис. 17.1 изображены характеристики для токов анода, сетки и катода в зависимости от напряжения сетки при постоянном анодном напряжении, соответствующие явно выраженному режиму насыщения лампы. При иg < 0 характеристики для анодного и катодного тока совпадают. Начальная точка характеристики (А) обычно соответствует напряжению запирания несколько более низкому, нежели вычисленное по формуле (17.6).

Если уменьшать по абсолютному значению отрицательное напряжение сетки, то лампа отпирается, потенциальный барьер у катода понижается и анодный ток возрастает. Число электронов, преодолевающих барьер, растет по нелинейному закону, и поэтому характеристика имеет нижний нелинейный участок АБ, который постепенно переходит в средний, приблизительно линейный участок БВ. При положительном сеточном напряжении характеристика для катодного тока расположена выше характеристики для анодного вследствие появления сеточного тока. Характеристика для сеточного тока идет из начала координат подобно характеристике диода.

Увеличение положительного напряжения сетки вызывает сначала рост всех токов. Постепенному переходу в режим насыщения соответствует верхний участок характеристики для анодного тока (ВГ). В режиме насыщения при увеличении сеточного напряжения катодный ток растет незначительно, но сеточный ток возрастает и за счет этого уменьшается анодный ток. При большом положительном сеточном напряжении анодный ток становится меньше сеточного.

Для ламп с активированным, например оксидным, катодом катодный ток в режиме насыщения возрастает почти так же, как в режиме объемного заряда. Если при этом ток сетки растет медленнее, чем катодный ток, то характеристика для анодного тока имеет подъем. Если же сеточный ток растет быстрее, чем катодный, то анодный ток уменьшается. Чем гуще сетка и чем меньше анодное напряжение, тем сильнее нарастает сеточный ток.

С большим положительным напряжением сетки работают только генераторные и импульсные лампы. У приемно-усилительных ламп сеточное напряжение обычно все время отрицательно, поэтому в справочниках характеристики таких ламп даются часто лишь для отрицательных сеточных напряжений.

В зависимости от значения μ, т. е. от густоты сетки, анодно-сеточная характеристика располагается различно. При густой сетке (высокий коэффициент μ) запирающее напряжение сетки невелико и основная часть характеристики находится в области положительных сеточных напряжений. Такая характеристика (и сама лампа) называется правой. А для редкой сетки (коэффициент μ невелик) запирающее напряжение получается большим, характеристика расположена в области отрицательных напряжений и называется левой. Лампы с левой характеристикой могут работать без сеточного тока.

Семейства анодно-сеточных и сеточных характеристик триода изображены на рис, 17.2. При повышении анодного напряжения характеристика для анодного тока сдвигается влево, а характеристика для сеточного тока проходит ниже.

Рис. 17.2. Семейство анодно-сеточных и сеточных характеристик триода

 

Семейство анодных, и сеточно-анодных характеристик и кривая максимальной допустимой 
 мощности, выделяемой на аноде

Рис. 17.3. Семейство анодных, и сеточно-анодных характеристик и кривая максимальной допустимой мощности, выделяемой на аноде

 

Часто бывает нужна добавочная характеристика, отсутствующая в семействе (на рисунке показана штрихами), например, характеристика для анодного напряжения 0,5(Ua2+ Uа3).

Рассмотрим семейства анодных и сеточно-анодных характеристик (рис. 17.3). Анодная характеристика при Ug = 0 идет из начала координат. Для более низких сеточных напряжений Ug1 - Ug5 анодные характеристики расположены правее (так как требуется более высокое отпирающее анодное напряжение) и идут слегка расходящимся пучком. Действительные анодные характеристики в отличие от теоретических сдвигаются не строго пропорционально сеточному напряжению. Анодные характеристики для положительных сеточных напряжений Ug6, Ug7, Ug8 идут из начала координат левее кривой Ug = 0 и выгибаются влево, а не вправо. Они сначала идут круто, а затем рост тока замедляется и крутизна кривых уменьшается.

Сеточно-анодные характеристики (штриховые) даны только для положительных сеточных напряжений, так как при отрицательных тока сетки нет. При uа = 0 ток сетки максимальный и тем больше, чем выше сеточное напряжение. При увеличении анодного напряжения сначала (в режиме возврата) ток сетки резко снижается вследствие токораспределения, а затем (в режиме перехвата) незначительно уменьшается.

В семействе анодных характеристик часто показывают линию максимальной допустимой мощности, выделяемой на аноде. Так как Ра = iaua, то уравнение этой линии следует записывать в виде

ia = P/ua. (17.9)

Для данной мощности Рamax и различных анодных напряжений можно вычислить анодный ток и по точкам построить кривую Рamax которая будет гиперболой. Область выше этой кривой соответствует недопустимым режимам работы лампы на постоянном токе, при

которых Ра > Рamax При импульсном режиме работа в области выше кривой Рamax возможна, если средняя мощность, выделяемая на аноде, не превышает предельную.

В семействе анодных характеристик также можно построить дополнительные характеристики. В качестве примера на рисунке проведена штрихпунктиром характеристика для напряжения, среднего между Ug3 и Ug4.

В импульсное режиме могут быть получены анодные токи, во много раз большие, нежели в режиме непрерывной работы. Импульсный режим достигается подачей на анод и сетку кратковременных повышенных напряжений. Для импульсного режима пользуются анодными характеристиками, снятыми при определенной длительности и частоте импульсов.

На рис. 17.4 приведены импульсные характеристики и внизу заштрихована маленькая область, соответствующая характеристикам для непрерывного режима.

Импульсные характеристики при больших положительных напряжениях сетки

Рис. 17.4. Импульсные характеристики при больших положительных напряжениях сетки

 

За счет начальных скоростей электронов, вылетающих из катода, контактной разности потенциалов и термо-ЭДС, действующих в сеточной цепи, характеристика для тока сетки может начинаться не только в точке иg = 0, а часто в области небольших отрицательных сеточных напряжений. Реже встречаются характеристики, начинающиеся в области положительных сеточных напряжений.

При отрицательном сеточном напряжении все же существует очень небольшой сеточный ток. Он называется обратным сеточным током (электроны этого тока во внешних проводах сеточной цепи движутся по направлению к сетке). Обратный сеточный ток имеет три составляющие: ионный ток, термо-ток и ток утечки.

Ионный ток наблюдается в лампах с недостаточным вакуумом. Электроны на пути к аноду сталкиваются с атомами газа и ионизируют их. Положительные ионы движутся к отрицательно заряженной сетке и отбирают от нее электроны, превращаясь в нейтральные атомы. Сетка расходует электроны, но эта убыль пополняется благодаря источнику сеточного напряжения, и на сетке поддерживается отрицательный потенциал. В цепи сетки проходит ток в направлении от «минуса» источника Еg к сетке.

При изменении степени разрежения в лампе меняется число ионов, изменяется ионный сеточный ток, и это приводит к нестабильности характеристик лампы.

Если сетка имеет высокую температуру, то может возникнуть ток термоэлектронной эмиссии (термоток) сетки. Для уменьшения этого тока в более мощных лампах проводники сетки делают из металла с большой работой выхода электронов.

Ток утечки в цепи сетки обусловлен несовершенством изоляции между сеткой и другими электродами.

 

 

 

Информация

 

Продолжение

К параметрам триода относится напряжение накала UH и ток накала IН, а также нормальное постоянное анодное и сеточное напряжение и соответствующий им постоянный анодный ток.

Важными являются максимальные допустимые параметры: мощность, выделяемая На аноде (Рamax), мощность, выделяемая на сетке (Рgmax), анодное напряжение Uamax, напряжение между катодом и подогревателем UК-Пmax, предельный ток катода Iкmax Для импульсных триодов указывают максимальный допустимый импульс анодного и катодного тока.

Параметры триода, определяющие его свойства и возможности применения,— это крутизна характеристики (короче, крутизна), внутреннее сопротивление и коэффициент усиления либо проницаемость. Эти параметры характеризуют работу лампы без нагрузки. Их обычно называют статическими.

Крутизна S характеризует управляющее действие сетки, т. е. влияние сеточного напряжения на анодный ток. Если при изменении сеточного напряжения Δиg анодный ток изменяется на Δia, то

S = Δia / Δиg при иa = const. (17.10)

Таким образом, крутизна есть отношение изменения анодного тока к вызвавшему его изменению сеточного напряжения при постоянном анодном напряжении. Условие иa = const необходимо для того, чтобы крутизна характеризовала действие только сеточного напряжения.

Крутизна лампы аналогична параметру биполярного транзистора у21э или крутизне полевого транзистора.

Выражают крутизну в миллиамперах на вольт или амперах на вольт. Крутизна показывает, на сколько миллиампер (ампер) изменяется анодный ток при изменении сеточного напряжения на один вольт, если анодное напряжение постоянно. Например, если Δиg = 2 В и Δia = 6 мА, то S = 6 : 2 = 3 мА/В.

В отличие от диода крутизна триода хотя и выражается в единицах проводимости, но не представляет собой внутреннюю проводимость участка сетка — катод.

Современные триоды имеют крутизну 1 — 50 мА/В. Чем больше крутизна, тем лучше лампа, так как сильнее управляющее действие сетки. В большинстве случаев крутизна составляет единицы миллиампер на вольт.

Для триода с плоскими электродами, работающего при иg < 0, по закону степени трех вторых получается выражение для крутизны

S = 3,5·10-6 Qa/dg-к2 ug + Dua.

(17.11)

Крутизна увеличивается при повышении напряжений сетки и анода, при увеличении площади поверхности анода и уменьшении расстояния сетка — катод. Чем меньше dg.K, тем сильнее влияние сетки на потенциальный барьер около катода.

Если сетку делать более редкой, то проницаемость D увеличивается и по формуле (17.11) получается, что крутизна должна возрастать. Но на самом деле для каждого значения dg-к существует наивыгоднейшая густота сетки, при которой крутизна максимальна.

Крутизна связана с наклоном анодно-сеточной характеристики. Чем круче эта характеристика, тем больше значение S. Крутизна пропорциональна тангенсу угла наклона касательной к характеристике. Наиболее просто крутизна определяется методом двух точек (рис. 17.5, а). Если участок между точками А и Б нелинейный, то определенная этим методом крутизна SАБ является средней для данного участка и приближенно равна крутизне в средней точке Т.

При определении крутизны из анодных характеристик (рис. 17.5, б) также применяют метод двух точек. Следует взять на характеристиках для Ug1 и Ug2 точки А и Б, соответствующие одному и тому же анодному напряжению. Изменение Δia при переходе от точки А к точке Б надо разделить на соответствующее изменение Δиg = Ugl Ug2. Найденная таким путем крутизна SAБ является средней для участка АБ, и ее можно отнести к точке Т.

Внутреннее сопротивление Ri характеризует влияние анодного напряжения на анодный ток и имеет тот же физический смысл, что и в диоде, т. е. является сопротивлением между анодом и катодом для переменного (изменяющегося) анодного тока.

 
 
Сайт создан в системе uCoz