Содержание

Общие сведения,
классификация
Устройство и работа диода
Устройство и работа триода
Электронная эмиссия
Термоэлектронные катоды
Особенности устройства
электронных ламп
Физические процессы
Закон степени трех вторых
Анодная характеристика
Параметры
Рабочий режим. Применение
диода для выпрямления
переменного тока
Основные типы
Физические процессы
Токораспределение
Действующее напряжение и
закон степени трех вторых
Характеристики
Параметры
Особенности
Усилительный каскад с
триодом
Параметры усилительного
каскада
Аналитический расчет и
эквивалентные схемы
усилительного каскада
Графоаналитический расчет
режима усиления
Генератор с триодом
Межэлектродные емкости
Каскады с общей сеткой и
общим анодом
Недостатки триодов
Основные типы приемно-
усилительных триодов
Устройство и работа тетрода
Устройство и работа пентода
Схемы включения тетродов
и пентодов
Характеристики тетродов
и пентодов
Параметры тетродов и
пентодов
Межэлектродные емкости
тетродов и пентодов
Устройство и работа
лучевого тетрода
Характеристики и параметры
лучевого тетрода
Рабочий режим тетродов
и пентодов
Пентоды переменной
крутизны
Краткие сведения о
различных типах
тетродов и пентодов
Специальные лампы
Общие сведения
Электростатические
электронно-лучевые трубки
Магнитные электронно-
лучевые трубки
Люминесцентный экран
Краткие сведения о
различных электронно-
лучевых трубках
Электрический разряд
в газах
Тлеющий разряд
Стабилитроны
Тиратроны тлеющего разряда
Индикаторные приборы
Дисплеи
Краткие сведения о
различных газоразрядных
приборах
Фотоэлектронная эмиссия
Электровакуумные
фотоэлементы
Фотоэлектронные умножители
Причины собственных шумов
Шумовые параметры
Межэлектродные емкости
и индуктивности выводов
Инерция электронов
Наведенные токи в
цепях электродов
Входное сопротивление
и потери энергии
Импульсный режим
Основные типы электронных
ламп для СВЧ
Общие сведения
Пролетный клистрон
Отражательный клистрон
Магнетрон
Лампы бегущей и
обратной волны
Амплитрон и карматрон
Надежность и испытание
электровакуумных приборов
Усилитель на триоде
с общим катодом
Ограничения по выбору
рабочей точки
Режим в рабочей точке
Катодное смещение
Выбор величины
сопротивления резистора
в цепи сетки
Выбор выходного
разделительного
конденсатора
Вредное влияние проходной
емкости лампы и пути
его уменьшения
Применение
экранированных ламп
Каскод (каскодная схема)
Катодный повторитель
Каскад с общим катодом
как приемник
неизменяющегося тока
Пентоды в качестве
приемников
неизменяющегося тока
Катодный повторитель
с активной нагрузкой
Катодный повторитель Уайта
μ-повторитель
Выбор верхней лампы для
μ -повторителя
Параллельно управляемый
двухламповый усилитель
(SRPP)
β-повторитель
Дифференциальная пара
(дифференциальный каскад)
Коэффициент реакции
питающего напряжения
(PSRR)
дифференциальной пары
Полупроводниковые
приемники неизменяющегося
тока для
дифференциальной пары
Использование транзисторов
в качестве активной нагрузки
для электронных ламп
Классификация искажений.
Принципы оценки линейных
искажений
Принципы измерения
нелинейных искажений
Измерение и интерпретация
искажений
Совершенствование
измерений нелинейных
гармонических искажений
Цифровая обработка сигналов
Особенности проектирования
усилителей с малыми
искажениями
Работа с сеточным током
и нелинейные искажения
Уменьшение искажений
подавлением (компенсацией)
Проблемы смещения
по постоянному току
Выбор электронной лампы по
критерию низких искажений
Проблема сопряжения одного
каскада со следующим
Усилитель класса А для
электромагнитных головных
телефонов с непосредств.
междукаскадной связью
Радиокомпоненты -
Общие сведения
Ряды стандартизованных
значений сопротивлений
Металлизированные
пленочные резисторы
Проволочные резисторы
Конденсаторы -
Общие сведения
Металлические конденсаторы
с воздушным диэлектриком
Пленочные конденсаторы,
изготовленные
металлизацией диэлектрика
Алюминиевые
электролитические
конденсаторы
Основные вопросы,
возникающие при
выборе конденсатора
Общие сведения о
катушках индуктивности
Трансформаторы -
Общие сведения
Трансформаторы.
Намагничивание и потери
Модели трансформаторов
Почему необходимо
использовать трансформаторы
Определение параметров
неизвестного трансформатора
Основные виды
источников питания
Выпрямление переменного
тока
Одиночный накопительный
конденсатор в роли
сглаживающего элемента
Влияние напряжения
пульсаций на выходное
напряжение
Насыщение сердечника
трансформатора
Критерии выбора силового
трансформатора
Источник питания со
сглаживающим дросселем
Номинальное значение
тока дросселя
Выбросы тока и
демпфирующие элементы
Использование накопительного
конденсатора для снижения
высоковольтного напряжения
Частотные характеристики
используемых на практике
LC-фильтров
Широкополосная фильтрация
Выпрямители с умножением
(умножители) напряжения
Классическая схема
последовательного
стабилизатора
Двухтранзисторная схема
последовательного
стабилизатора
Стабилизатор цепи сеточного
смещения с регулируемым
выходным напряжением
Источники питания низкого
напряжения и синфазный шум
Ламповый стабилизатор
напряжения
Способы увеличения
выходного тока стабилизатора
Коэффициент режекции
источника питания
Включение сглаживающих
конденсаторов
Перенапряжения при
включении схемы
Составление предварительной
схемы блока питания
Высоковольтный выпрямитель
и стабилизатор
Особенности смещения
подогревателей ламп
Схема улучшенного
источника питания
Рабочий режим
Увеличение максимально
допустимого Vrrm
Выходной каскад класса А
с несимметричным выходом
Особенности акустических
систем
Неидеальности
трансформаторов
Режимы работы усилительных
приборов. Классы усилителей
Двухтактный выходной каскад
Выходной каскад по
ультралинейной схеме
Трансформаторный катодный
повторитель
Усилители без выходного
трансформатора
Составляющие блока
усилителя мощности
Предоконечный каскад блока
усилителя мощности
Фазоинверсный каскад
Дифференциальный усилитель
или пара с катодной связью
«Согласованный»
фазоинвертор
Общие проблемы
устойчивости усилителей
Подавление первой
доминанты ВЧ составляющей
Низкочастотное
самовозбуждение усилителя
Усилитель Williamson
Усилитель Milliard 5-20
Усилитель Quad II
Выбор выходной лампы
Выбор статической рабочей
точки с учетом Pвых и КНИ
Точное определение
выходного трансформатора
Особенность выпрямление
высоковольтного напряжения
Варианты применения
стабилизатора ВВ напряжения
Требования к каскаду
предоконечного усиления
Определение рабочей точки
предоконечного каскада
Проверка работоспособности
усилителя
Пример разработки
двухтактного УМ
Оптимизация входного и
фазоинверсного каскадов
Расчет R катодного смещения
лампы и R обратной связи
Выбор элементов
оконечного каскада
Разработка усилителей
мощностью более 10 Вт
Активные кроссоверы
и схема Зобеля
Выбор лампы для
оконечного каскада
Требования к предоконечному
каскаду усиления
Источники питания и
постоянная токовая нагрузка
Второй дифференциальный
усилитель и выходной каскад
Первый дифференциальный
усилитель и линейность х-ки
Каскодная схема постоянной
токовой нагрузки
Постоянная токовая нагрузка
первого диф. каскада
Элементы, повышающие ВЧ
устойчивость. Итоговая схема
Схема источника питания
«Потомок от усилителя Beast»
Расчет уровня фонового
шума от ИП
Особенности цифрового
сигнала от компакт-диска
Требования к предусилителю
Технические требования
к линейному каскаду
Традиционный линейный
каскад
Пути достижения заданных
требований и выбор лампы
Основные проблемы
регулирования громкости
Переключаемые аттенюаторы
Расчет переключаемого
аттенюатора
Табличные вычисления для
расчета регулятора громкости
Светочувствительные
резисторы и громкость
Входной переключатель
Частотный корректор RIAA
Влияние провода
звукоснимателя
Требования к блоку
частотной коррекции
Метод частотной коррекции
стандарта RIAA
Раздельное выравнивание
характеристики RIAA
Шумы и влияние входной
емкости входного каскада
Учет собственных
шумов лампы
Улучшение шумовых
характеристик с RIAA
Расчет элементов на 75 мкс
Параметры цепей на
3180 мкс и 318 мкс
Симметричный вход и
подключение звукоснимателя
Симметричный предусилитель
Возможности исключения
линейного каскада
Вариант RIAA с исполь-
зованием лампы типа ЕС8010
Оптимизация характеристик
входного трансформатора
Анализ работы блока RIAA
Практические методы
настройки блока RIAA
Линейный каскад
О межблочных и
акустических кабелях

 

 
 

Тиратроны тлеющего разряда

Широкое применение получили тиратроны тлеющего разряда (тиратроны с холодным катодом) с тремя или более электродами. Они используются в автоматике, в релейных и счетных схемах, а также в импульсных генераторах и других устройствах. Название «тиратрон» происходит от слова «электрон» и греческого слова thyra (дверь), подчеркивающего возможность «открывания» (отпирания) тиратрона с помощью сетки.

В трех электродных тиратронах тлеющего разряда между анодом и катодом расположен третий электрод, называемый сеткой или пусковым электродом. Сетка в тиратроне обладает более ограниченным действием, нежели в электронных электровакуумных триодах. В последних, изменяя напряжение сетки, можно полностью управлять анодным током, т. е. регулировать его от нуля до максимального значения. А в тиратроне с помощью сетки можно только отпирать тиратрон, но нельзя изменять анодный ток. После возникновения разряда сетка теряет управляющее действие. Прекратить разряд в тиратроне можно только понижением анодного напряжения до значения, при котором разряд не сможет существовать, или разрывом анодной цепи.

На рис. 21.11 показано устройство одного из тиратронов тлеющего разряда. Расстояния между электродами и давление газа подбираются так, что между сеткой и катодом возникает самостоятельный темный разряд при более низком напряжении, чем напряжение между анодом и катодом. А затем может возникнуть тлеющий разряд между катодом и анодом, если напряжение анода будет достаточным. При этом ток сетки составляет единицы или десятки микроампер, а ток анода может быть в тысячи раз большим (единицы или десятки миллиампер). Напряжение возникновения разряда в анодной цепи UВ тем ниже, чем больше ток сетки ig. Это объясняется тем, что с ростом тока сетки в промежутке сетка — катод увеличивается количество ионов и электронов и облегчается возникновение разряда в анодной цепи.

Устройство и пусковая характеристика тиратрона тлеющего разряда 
 1 — вторая сетка; 2 — анод; 3 — катод; 4 — первая сетка

Рис. 21.11. Устройство и пусковая характеристика тиратрона тлеющего разряда 1 — вторая сетка; 2 — анод; 3 — катод; 4 — первая сетка

 

Зависимость напряжения UВ от тока ig называется пусковой характеристикой. При отсутствии тока сетки напряжение возникновения разряда максимально. Увеличение тока ig вызывает снижение напряжения UВ, сначала резкое, а затем медленное. Однако значение UВ не может быть меньше рабочего напряжения Upaб, необходимого для поддержания тлеющего разряда между анодом и катодом. Пусковая характеристика зависит от рода газа, его давления, формы и состояния поверхности электродов.

Потеря сеткой управляющего действия после возникновения разряда в анодной цепи объясняется тем, что сетка окружена плазмой — с большим количеством электронов и ионов. Положительно заряженная сетка притягивает из плазмы электроны, которые образуют около поверхности сетки отрицательно заряженный слой (электронную оболочку), нейтрализующий действие положительного заряда сетки (рис. 21.12, а). Если увеличить, или уменьшить положительное напряжение сетки, то она притянет к себе из плазмы больше или меньше электронов и по-прежнему действие ее заряда будет нейтрализоваться соответственно изменившимся зарядом электронной оболочки. А если дать на сетку отрицательное напряжение, то она притянет из плазмы положительные ионы, которые создадут вокруг нее положительно заряженный слой (ионную оболочку), нейтрализующий действие отрицательного заряда сетки (рис. 21.12, б).

Электронная (или ионная) оболочка сетки находится в динамическом состоянии. Так, например, ионы, коснувшись отрицательно заряженной сетки, отнимают от нее электроны и превращаются в нейтральные атомы, но на смену им к сетке притягиваются из плазмы новые ионы. Если увеличить отрицательное напряжение сетки, то она притянет больше ионов. Заряд ионной оболочки увеличивается и снова полностью компенсирует действие отрицательного заряда сетки. Иначе можно сказать, что поле, создаваемое зарядом сетки, сосредоточено между сеткой и ее ионной (или электронной) оболочкой, как между обкладками конденсатора. Это поле не проникает через оболочку, поэтому не может влиять на ток анода.

Электронная и ионная оболочка сетки

Рис. 21.12. Электронная и ионная оболочка сетки

 

Включение тиратрона тлеющего разряда в качестве реле

Рис. 21.13. Включение тиратрона тлеющего разряда в качестве реле

 

Схема и график работы генератора пилообразного напряжения с тиратроном

Рис. 21.14. Схема и график работы генератора пилообразного напряжения с тиратроном

 

Схема включения тиратрона тлеющего разряда в качестве реле показана на рис. 21.13. Напряжение анодного источника Еa должно быть меньше UВmax а напряжение Еg — меньше того, которое необходимо для возникновения разряда в промежутке сетка — катод. Резистор Rg ограничивает сеточный ток и поэтому увеличивает входное сопротивление схемы для источника импульсов, отпирающих тиратрон. Когда положительный импульс напряжения, достаточный для отпирания, поступает на сетку, то возникает разряд на участке сетка — катод. Если при этом получается необходимый ток сетки, то разряд переходит и на анод. Следовательно, импульс напряжения и тока от маломощного генератора в цепи сетки вызывает значительный ток в нагрузке RH, включенной в анодную цепь.

Ряд тиратронов тлеющего разряда выпускается с двумя сетками. В таких тиратронах управляющей является вторая сетка, более удаленная от катода. На первую сетку подается постоянное положительное напряжение, и в цепи этой сетки все время существует очень небольшой ток (единицы или десятки микроампер) так называемого подготовительного разряда. На второй сетке постоянное положительное напряжение ниже, чем на первой. Поэтому тормозящее поле между сетками не допускает электроны к аноду. При подаче импульса дополнительного напряжения на вторую сетку тиратрон отпирается, т. е. электроны проникают сквозь вторую сетку, и в цепи анода возникает тлеющий разряд.

Наши отечественные тиратроны тлеющего разряда, как правило, имеют сверхминиатюрное оформление и наполнены неоном, или аргоном, или неоно-аргоновой смесью. Они могут работать при температуре окружающей среды от — 60 до +100° С. Их долговечность составляет несколько тысяч часов. Рабочие напряжения сеток и анода десятки — сотни вольт. Время восстановления управляющего действия сетки после прекращения анодного тока зависит от длительности деионизации и обычно составляет десятки или сотни микросекунд.

В качестве примера применения тиратрона рассмотрим простейшую схему тиратронного генератора пилообразного напряжения (рис. 21.14, а). От источника анодного питания Eа через резистор R заряжается конденсатор С. Параллельно конденсатору включен тиратрон Л. Во время заряда конденсатора напряжение на нем растет, и когда оно достигает напряжения возникновения разряда UВ, то тиратрон отпирается и начинает проводить ток. Сопротивление его становится сравнительно малым, и конденсатор быстро разряжается через тиратрон. Напряжение понижается до напряжения прекращения разряда UП. Как только разряд в тиратроне прекратится, снова начнется сравнительно медленный заряд конденсатора через резистор, сопротивление которого значительно больше сопротивления открытого тиратрона, и весь процесс будет повторяться.

Вольт-амперная характеристика и условное графическое обозначение неоновой лампы

Рис. 21.15. Вольт-амперная характеристика и условное графическое обозначение неоновой лампы

 

График пилообразного напряжения, получающегося на аноде тиратрона и на конденсаторе, показан на рис. 21.14,6. Так как напряжение UП у тиратронов невелико, а напряжение UВ достигает сотен вольт, то подобный генератор может выдавать пилообразное напряжение с большой амплитудой. Чем больше сопротивление R и емкость С, тем медленнее происходит заряд и тем ниже частота. Кроме того, если увеличить положительное напряжение сетки тиратрона, то понизится напряжение UВ и это вызовет уменьшение амплитуды и повышение частоты.

 

 

 

Информация

 

Продолжение

В современной РЭА широко применяются различные индикаторные приборы, в частности так называемые знаковые и цифровые индикаторы. Некоторые из них относятся к газоразрядным приборам тлеющего разряда, но существуют и электронные электровакуумные индикаторы. Разработаны и используются также полупроводниковые индикаторные приборы.

Неоновые лампы применяются в качестве индикаторов напряжения и для других целей. Они представляют собой приборы тлеющего разряда, работающие в режиме аномального катодного падения обязательно с ограничительным резистором Rогр.

Вольт-амперная характеристика приведена на рис. 21.15. При возникновении разряда (точка А) происходит скачок тока и напряжения и начинается свечение. Дальнейшее повышение напряжения вызывает повышение тока. При этом увеличивается плотность тока катода и яркость свечения. Характерно то, что при уменьшении напряжения кривая пойдет выше, чем при увеличении. Разряд прекращается при более низком напряжении, нежели возникает (UП<UВ). В момент прекращения разряда ток скачком уменьшается до нуля, а напряжение скачком повышается, поскольку падение напряжения на резисторе Rогр скачком уменьшается до нуля и подводимое к цепи напряжение перераспре-деляется. Экспериментально напряжение UП измеряют как наиболее низкое напряжение при наличии тока и свечения в лампе (перед прекращением разряда).

Разница между напряжениями UП и UВ характерна для всех газоразрядных приборов, в частности для стабилитронов. У неоновых ламп напряжение UП на несколько единиц или десятков вольт ниже, чем напряжение UB. Это объясняется тем, что перед возникновением разряда газ неионизирован. А перед прекращением разряда газ ионизирован, и разряд существует при более низком напряжении.

Неоновая лампа применяется в качестве индикатора постоянного и переменного напряжения. При переменном напряжении разряд возникает в момент, когда мгновенное значение напряжения становится равным напряжению UB.

Промышленность выпускает много различных неоновых ламп. Напряжение UB у них может быть 50 — 200 В, а иногда и выше. Рабочий ток при нормальном свечении — от десятых долей миллиампера до десятков миллиампер.

Значительный интерес представляет управляемая трехэлектродная индикаторная лампа, имеющая анод и два катода: индикаторный и вспомогательный, расположенные внутри анода. Через купол баллона можно видеть свечение газа только около индикаторного катода. Индикаторный катод ИК подключен к минусу источника через резистор R, а вспомогательный катод ВК непосредственно (рис. 21.16). Когда на лампу подано только напряжение от анодного источника, работает вспомогательный катод. Так как он заслонен анодом, то свечения газа не видно. Пусть теперь на резистор в цепи индикаторного свечения катода подано дополнительное управляющее напряжение в несколько единиц вольт с такой полярностью, чтобы оно суммировалось с напряжением анодного источника. Тогда напряжение между анодом и индикаторным катодом возрастает, разряд перебрасывается на этот катод и лампа дает видимое свечение. Если же дополнительное напряжение, подаваемое на резистор, снять, то разряд снова будет только между анодом и вспомогательным катодом. Свечение газа у индикаторного катода прекращается.

Знаковые индикаторы тлеющего разряда широко распространены. Принцип устройства их показан на рис. 21.17. В баллоне с неоном находятся катоды, выгнутые из проволоки в виде цифр или других знаков и расположенные один за другим. На рис. 21.17, а приведены для упрощения лишь первые два катода в виде цифр 1 и 2. В цифровых индикаторах имеется 10 катодов в виде цифр от 0 до 9. Анод обычно сделан из проволочной сетки. При подаче напряжения между анодом и одним из катодов возникает свечение газа (около катода), т. е. виден светящийся знак. Толщина светящейся линии примерно 1 — 2 мм. Выпускаются подобные индикаторы с так называемыми сегментными катодами, синтезирующими изображение (рис. 21.17,6). Включение этих катодов в той или иной комбинации дает светящееся изображение цифры или какого-то другого знака. В настоящее время выпускается много типов подобных индикаторов на различные знаки.

 
 
Сайт создан в системе uCoz