Содержание

Общие сведения,
классификация
Устройство и работа диода
Устройство и работа триода
Электронная эмиссия
Термоэлектронные катоды
Особенности устройства
электронных ламп
Физические процессы
Закон степени трех вторых
Анодная характеристика
Параметры
Рабочий режим. Применение
диода для выпрямления
переменного тока
Основные типы
Физические процессы
Токораспределение
Действующее напряжение и
закон степени трех вторых
Характеристики
Параметры
Особенности
Усилительный каскад с
триодом
Параметры усилительного
каскада
Аналитический расчет и
эквивалентные схемы
усилительного каскада
Графоаналитический расчет
режима усиления
Генератор с триодом
Межэлектродные емкости
Каскады с общей сеткой и
общим анодом
Недостатки триодов
Основные типы приемно-
усилительных триодов
Устройство и работа тетрода
Устройство и работа пентода
Схемы включения тетродов
и пентодов
Характеристики тетродов
и пентодов
Параметры тетродов и
пентодов
Межэлектродные емкости
тетродов и пентодов
Устройство и работа
лучевого тетрода
Характеристики и параметры
лучевого тетрода
Рабочий режим тетродов
и пентодов
Пентоды переменной
крутизны
Краткие сведения о
различных типах
тетродов и пентодов
Специальные лампы
Общие сведения
Электростатические
электронно-лучевые трубки
Магнитные электронно-
лучевые трубки
Люминесцентный экран
Краткие сведения о
различных электронно-
лучевых трубках
Электрический разряд
в газах
Тлеющий разряд
Стабилитроны
Тиратроны тлеющего разряда
Индикаторные приборы
Дисплеи
Краткие сведения о
различных газоразрядных
приборах
Фотоэлектронная эмиссия
Электровакуумные
фотоэлементы
Фотоэлектронные умножители
Причины собственных шумов
Шумовые параметры
Межэлектродные емкости
и индуктивности выводов
Инерция электронов
Наведенные токи в
цепях электродов
Входное сопротивление
и потери энергии
Импульсный режим
Основные типы электронных
ламп для СВЧ
Общие сведения
Пролетный клистрон
Отражательный клистрон
Магнетрон
Лампы бегущей и
обратной волны
Амплитрон и карматрон
Надежность и испытание
электровакуумных приборов
Усилитель на триоде
с общим катодом
Ограничения по выбору
рабочей точки
Режим в рабочей точке
Катодное смещение
Выбор величины
сопротивления резистора
в цепи сетки
Выбор выходного
разделительного
конденсатора
Вредное влияние проходной
емкости лампы и пути
его уменьшения
Применение
экранированных ламп
Каскод (каскодная схема)
Катодный повторитель
Каскад с общим катодом
как приемник
неизменяющегося тока
Пентоды в качестве
приемников
неизменяющегося тока
Катодный повторитель
с активной нагрузкой
Катодный повторитель Уайта
μ-повторитель
Выбор верхней лампы для
μ -повторителя
Параллельно управляемый
двухламповый усилитель
(SRPP)
β-повторитель
Дифференциальная пара
(дифференциальный каскад)
Коэффициент реакции
питающего напряжения
(PSRR)
дифференциальной пары
Полупроводниковые
приемники неизменяющегося
тока для
дифференциальной пары
Использование транзисторов
в качестве активной нагрузки
для электронных ламп
Классификация искажений.
Принципы оценки линейных
искажений
Принципы измерения
нелинейных искажений
Измерение и интерпретация
искажений
Совершенствование
измерений нелинейных
гармонических искажений
Цифровая обработка сигналов
Особенности проектирования
усилителей с малыми
искажениями
Работа с сеточным током
и нелинейные искажения
Уменьшение искажений
подавлением (компенсацией)
Проблемы смещения
по постоянному току
Выбор электронной лампы по
критерию низких искажений
Проблема сопряжения одного
каскада со следующим
Усилитель класса А для
электромагнитных головных
телефонов с непосредств.
междукаскадной связью
Радиокомпоненты -
Общие сведения
Ряды стандартизованных
значений сопротивлений
Металлизированные
пленочные резисторы
Проволочные резисторы
Конденсаторы -
Общие сведения
Металлические конденсаторы
с воздушным диэлектриком
Пленочные конденсаторы,
изготовленные
металлизацией диэлектрика
Алюминиевые
электролитические
конденсаторы
Основные вопросы,
возникающие при
выборе конденсатора
Общие сведения о
катушках индуктивности
Трансформаторы -
Общие сведения
Трансформаторы.
Намагничивание и потери
Модели трансформаторов
Почему необходимо
использовать трансформаторы
Определение параметров
неизвестного трансформатора
Основные виды
источников питания
Выпрямление переменного
тока
Одиночный накопительный
конденсатор в роли
сглаживающего элемента
Влияние напряжения
пульсаций на выходное
напряжение
Насыщение сердечника
трансформатора
Критерии выбора силового
трансформатора
Источник питания со
сглаживающим дросселем
Номинальное значение
тока дросселя
Выбросы тока и
демпфирующие элементы
Использование накопительного
конденсатора для снижения
высоковольтного напряжения
Частотные характеристики
используемых на практике
LC-фильтров
Широкополосная фильтрация
Выпрямители с умножением
(умножители) напряжения
Классическая схема
последовательного
стабилизатора
Двухтранзисторная схема
последовательного
стабилизатора
Стабилизатор цепи сеточного
смещения с регулируемым
выходным напряжением
Источники питания низкого
напряжения и синфазный шум
Ламповый стабилизатор
напряжения
Способы увеличения
выходного тока стабилизатора
Коэффициент режекции
источника питания
Включение сглаживающих
конденсаторов
Перенапряжения при
включении схемы
Составление предварительной
схемы блока питания
Высоковольтный выпрямитель
и стабилизатор
Особенности смещения
подогревателей ламп
Схема улучшенного
источника питания
Рабочий режим
Увеличение максимально
допустимого Vrrm
Выходной каскад класса А
с несимметричным выходом
Особенности акустических
систем
Неидеальности
трансформаторов
Режимы работы усилительных
приборов. Классы усилителей
Двухтактный выходной каскад
Выходной каскад по
ультралинейной схеме
Трансформаторный катодный
повторитель
Усилители без выходного
трансформатора
Составляющие блока
усилителя мощности
Предоконечный каскад блока
усилителя мощности
Фазоинверсный каскад
Дифференциальный усилитель
или пара с катодной связью
«Согласованный»
фазоинвертор
Общие проблемы
устойчивости усилителей
Подавление первой
доминанты ВЧ составляющей
Низкочастотное
самовозбуждение усилителя
Усилитель Williamson
Усилитель Milliard 5-20
Усилитель Quad II
Выбор выходной лампы
Выбор статической рабочей
точки с учетом Pвых и КНИ
Точное определение
выходного трансформатора
Особенность выпрямление
высоковольтного напряжения
Варианты применения
стабилизатора ВВ напряжения
Требования к каскаду
предоконечного усиления
Определение рабочей точки
предоконечного каскада
Проверка работоспособности
усилителя
Пример разработки
двухтактного УМ
Оптимизация входного и
фазоинверсного каскадов
Расчет R катодного смещения
лампы и R обратной связи
Выбор элементов
оконечного каскада
Разработка усилителей
мощностью более 10 Вт
Активные кроссоверы
и схема Зобеля
Выбор лампы для
оконечного каскада
Требования к предоконечному
каскаду усиления
Источники питания и
постоянная токовая нагрузка
Второй дифференциальный
усилитель и выходной каскад
Первый дифференциальный
усилитель и линейность х-ки
Каскодная схема постоянной
токовой нагрузки
Постоянная токовая нагрузка
первого диф. каскада
Элементы, повышающие ВЧ
устойчивость. Итоговая схема
Схема источника питания
«Потомок от усилителя Beast»
Расчет уровня фонового
шума от ИП
Особенности цифрового
сигнала от компакт-диска
Требования к предусилителю
Технические требования
к линейному каскаду
Традиционный линейный
каскад
Пути достижения заданных
требований и выбор лампы
Основные проблемы
регулирования громкости
Переключаемые аттенюаторы
Расчет переключаемого
аттенюатора
Табличные вычисления для
расчета регулятора громкости
Светочувствительные
резисторы и громкость
Входной переключатель
Частотный корректор RIAA
Влияние провода
звукоснимателя
Требования к блоку
частотной коррекции
Метод частотной коррекции
стандарта RIAA
Раздельное выравнивание
характеристики RIAA
Шумы и влияние входной
емкости входного каскада
Учет собственных
шумов лампы
Улучшение шумовых
характеристик с RIAA
Расчет элементов на 75 мкс
Параметры цепей на
3180 мкс и 318 мкс
Симметричный вход и
подключение звукоснимателя
Симметричный предусилитель
Возможности исключения
линейного каскада
Вариант RIAA с исполь-
зованием лампы типа ЕС8010
Оптимизация характеристик
входного трансформатора
Анализ работы блока RIAA
Практические методы
настройки блока RIAA
Линейный каскад
О межблочных и
акустических кабелях
 
 

Полупроводниковые приемники неизменяющегося тока для дифференциальной пары

Дифференциальной паре необходимы приемники неизменяющегося тока, но хороший приемник неизменяющегося тока на пентоде является неэкономным по энергопотреблению. Более того, дифференциальной паре с сетками, имеющими нулевой потенциал относительно земли, потребовался бы дополнительный источник отрицательного смещения для приемника неизменяющегося тока — 100 В. Это зачастую нежелательное, поэтому желателен поиск других решений.

В отличие от первых разработчиков, использующих исключительно электронные лампы, современные разработчики находятся в более выгодном положении так как есть возможность использовать транзисторы, и даже операционные усилители, если в этом возникает необходимость. Рассматриваемый случай как раз является наглядным примером, где транзисторы могут быть очень полезны.

Простейшая форма приемника неизменяющегося тока на транзисторе (см. левую схему на рис. 3.43) очень похожа на аналогичный каскад на лампе триоде. Красный светодиод устанавливает неизменяемый потенциал ≈ 1,7 В на базе транзистора. Напряжение между базой и эмиттером транзистора Vбэ равен ≈ 0,7 В, таким образом, на резисторе в цепи эмиттера падает 1 В. Если нужен приемник неизменяющегося тока на 5 мА, следует использовать резистор-датчик на 200 Ом. Эквивалентное сопротивление по переменному току в коллекторной цепи будет равно:

При используемом в этом примере транзисторе типа ВС549 (hfe ≈ 400, 1/hoe ≈ 12 кОм) расчет дает rвых ≈ 92 кОм. Заметим, что для подачи смещения на светодиод требуется дорогостоящий резистор с допустимой мощностью рассеяния 2 Вт.

Полупроводниковые приемники неизменяющегося тока

Рис. 3.43 Полупроводниковые приемники неизменяющегося тока

Простая схема может быть легко улучшена, путем увеличения числа транзисторов. Поскольку ныне кремниевые транзисторы относительно дешевы, такое усложнение вполне оправдано. Нужно решить две проблемы. Во-первых, транзистору требуется напряжение VКЭ > 0,5 В, чтобы он работал как приемник неизменяющегося тока, что совсем удобно, поскольку близко по величине к напряжению смещения для электронных ламп с высоким μ, например, ЕСС83. Во-вторых, выходное сопротивление 92 кОм не особенно большое, и его можно сделать намного лучше.

Одним из вариантов является каскодная схема. Транзисторная каскодная схема (см. вторую слева схему на рис. 3.43) в общих чертах аналогична пентодной, но на практике такая схема требует отрицательного питания, что неудобно. Тем не менее, эта проблема может быть легко разрешима, поскольку для питания каскадов усилителя мощности, часто имеется отрицательное питание смещения для выходных ламп, получаемое от специальной обмотки силового трансформатора и дополнительного выпрямителя. Хотя обмотка смещения силовых трансформаторов обычно обеспечивает ток < 1 мА, провод, рассчитанный на ток 1 мА, очень хрупкий. По этой причине изготовители трансформаторов обычно используют более толстый провод, с допускаемым током 10 мА, и увеличение общей нагрузки трансформатора при использовании этой обмотки для питания дополнительных устройств обычно незначительно.

Каскодная схема приемника неизменяющегося тока имеет более высокое выходное сопротивление, чем приемник неизменяющегося тока с одним транзистором:

Выходное сопротивление переменному току исходной схемы умножается на hfe второго транзистора, что улучшает его с ≈ 92 кОм до ≈ 32 МОм, таким образом, величина из 1/hoe является незначительной и не принимается в расчет. Тем не менее, большим практическим преимуществом является то, что отрицательное питание позволяет снижать выходной сигнал вплоть до 0 В без проблем с линейностью. Устойчивость каскада является превосходной, в том числе и на высоких частотах.

Как показано, каскодная схема источника тока является сравнительно чувствительной к помехам от источника промышленной частоты и шумам отрицательного питания, потому что ток меняется из-за изменения напряжения источника опорного напряжения. Эта чувствительность может быть значительно уменьшена путем модификации схемы — включив диод, регулирующий ток, в цепь, которая питает источники опорных напряжений (рис. 3.43).

Каскодный приемник неизменяющегося тока может быть адаптирован на большее напряжение простой заменой того из транзисторов, который питает нагрузку, на транзистор, предназначенный для высоковольтных устройств. Это немного снижает rвых, потому что такой транзистор обычно имеет более низкий hfe, но так как теперь имеется запас по напряжению, большая часть этого снижения может быть восстановлена установкой более высокого значения напряжения источника опорного напряжения, позволяя иметь большую величину RЭ. К сожалению, если требуется мощный транзистор, его большая выходная емкость ухудшает характеристики каскада на высоких частотах. Такой каскад показан на второй справа схеме рис. 3.43. Диод

1N4148 в этом примере компенсирует температурную нестабильность управляющего напряжения Vбэ нижнего транзистора, но его установка требует перерасчета значений всех элементов схемы.

Так называемое «двойное кольцо» на транзисторах (правая схема на рис. 3.43) поддерживает напряжение 0,7 В, используя резистор-датчик 120 Ом. Если это напряжение повышается, из-за увеличения тока через резистор, то транзистор Т1 открывается сильнее, что вызывает понижение напряжения на базе. Транзистор Т2 начинает закрываться и ток через резистор 120 Ом падает, и, следовательно, ток такого каскада — приемника, поддерживается неизменным. Так как в этой схеме используется обратная связь, приложенная к двум транзисторам, то не исключена возможность самовозбуждения на высоких частотах из-за наличия паразитной емкости.

 

 

 

Информация

Сайт компьютерной графики и создания электронных книг

Несложные аудиоконструкции и около-моддинговая электроника

For-gsm.ru - hi-tech технологии, новинки, обзоры, аналитика, форум

Катушки индуктивности

 

Продолжение

Во всех рассмотренных выше схемах приемников неизменяющегося тока можно изменить полярность напряжения на противоположную с одновременной заменой p-n-р транзисторов на n-p-n. Если эти каскады-приемники подключить в цепь напряжения питания в качестве активной нагрузки лампы, они становиться источниками неизменяющегося тока, позволяя усилительному каскаду на триоде достичь коэффициента усиления Av = μ. Очень важным свойством усилительного каскада с полупроводниковой активной нагрузкой является то, что возможно достичь низкого уровня искажений при низком напряжении питания.

Например, для каскада на триоде типа ЕСС83 требуется достаточно высокое питающее напряжение VA, для обеспечения режима с нулевым сеточным током. Для маломощных электронных ламп с большим μ, напряжение между анодом и катодом в номинальном режиме часто выбирают равным 150 В. Для выбора Rh также существует общее практическое правило — Rh > 2rа, и так как для ЕСС83 rа = 75 кОм, можно использовать RH = 150 кОм. Если Iа = 0,7 мА, получим падение напряжения 105 В на RH, поэтому потребуется напряжение питания 255 В. Но маломощные каскады зачастую предназначены для усиления малых сигналов, например, для обеспечения на выходе амплитуды напряжения 5 В, поэтому коэффициент использования по питающему напряжению и КПД такого каскада оказываются очень низкими. Если заменить резистор 150 кОм источником неизменяющегося тока, то электронная лампа обеспечивает намного более высокое значение RH, и можно установить напряжение питания независимо, чтобы обеспечивать максимальное значение требуемого размаха выходного напряжения.

На рис. 3.44 представлен очень наглядный пример использования электронной лампы с большим μ с низким напряжением питания. В этом примере требовался большой коэффициент усиления дифференциальной пары на лампе ЕСС83 с μ = 100, при пониженном напряжении анодного питания 150 В. Заметим, что для схем активной нагрузки ламп необходимы высоковольтные транзисторы, способные выдержать необходимый размах анодного напряжения.

 
 
Сайт создан в системе uCoz