Содержание

Общие сведения,
классификация
Устройство и работа диода
Устройство и работа триода
Электронная эмиссия
Термоэлектронные катоды
Особенности устройства
электронных ламп
Физические процессы
Закон степени трех вторых
Анодная характеристика
Параметры
Рабочий режим. Применение
диода для выпрямления
переменного тока
Основные типы
Физические процессы
Токораспределение
Действующее напряжение и
закон степени трех вторых
Характеристики
Параметры
Особенности
Усилительный каскад с
триодом
Параметры усилительного
каскада
Аналитический расчет и
эквивалентные схемы
усилительного каскада
Графоаналитический расчет
режима усиления
Генератор с триодом
Межэлектродные емкости
Каскады с общей сеткой и
общим анодом
Недостатки триодов
Основные типы приемно-
усилительных триодов
Устройство и работа тетрода
Устройство и работа пентода
Схемы включения тетродов
и пентодов
Характеристики тетродов
и пентодов
Параметры тетродов и
пентодов
Межэлектродные емкости
тетродов и пентодов
Устройство и работа
лучевого тетрода
Характеристики и параметры
лучевого тетрода
Рабочий режим тетродов
и пентодов
Пентоды переменной
крутизны
Краткие сведения о
различных типах
тетродов и пентодов
Специальные лампы
Общие сведения
Электростатические
электронно-лучевые трубки
Магнитные электронно-
лучевые трубки
Люминесцентный экран
Краткие сведения о
различных электронно-
лучевых трубках
Электрический разряд
в газах
Тлеющий разряд
Стабилитроны
Тиратроны тлеющего разряда
Индикаторные приборы
Дисплеи
Краткие сведения о
различных газоразрядных
приборах
Фотоэлектронная эмиссия
Электровакуумные
фотоэлементы
Фотоэлектронные умножители
Причины собственных шумов
Шумовые параметры
Межэлектродные емкости
и индуктивности выводов
Инерция электронов
Наведенные токи в
цепях электродов
Входное сопротивление
и потери энергии
Импульсный режим
Основные типы электронных
ламп для СВЧ
Общие сведения
Пролетный клистрон
Отражательный клистрон
Магнетрон
Лампы бегущей и
обратной волны
Амплитрон и карматрон
Надежность и испытание
электровакуумных приборов
Усилитель на триоде
с общим катодом
Ограничения по выбору
рабочей точки
Режим в рабочей точке
Катодное смещение
Выбор величины
сопротивления резистора
в цепи сетки
Выбор выходного
разделительного
конденсатора
Вредное влияние проходной
емкости лампы и пути
его уменьшения
Применение
экранированных ламп
Каскод (каскодная схема)
Катодный повторитель
Каскад с общим катодом
как приемник
неизменяющегося тока
Пентоды в качестве
приемников
неизменяющегося тока
Катодный повторитель
с активной нагрузкой
Катодный повторитель Уайта
μ-повторитель
Выбор верхней лампы для
μ -повторителя
Параллельно управляемый
двухламповый усилитель
(SRPP)
β-повторитель
Дифференциальная пара
(дифференциальный каскад)
Коэффициент реакции
питающего напряжения
(PSRR)
дифференциальной пары
Полупроводниковые
приемники неизменяющегося
тока для
дифференциальной пары
Использование транзисторов
в качестве активной нагрузки
для электронных ламп
Классификация искажений.
Принципы оценки линейных
искажений
Принципы измерения
нелинейных искажений
Измерение и интерпретация
искажений
Совершенствование
измерений нелинейных
гармонических искажений
Цифровая обработка сигналов
Особенности проектирования
усилителей с малыми
искажениями
Работа с сеточным током
и нелинейные искажения
Уменьшение искажений
подавлением (компенсацией)
Проблемы смещения
по постоянному току
Выбор электронной лампы по
критерию низких искажений
Проблема сопряжения одного
каскада со следующим
Усилитель класса А для
электромагнитных головных
телефонов с непосредств.
междукаскадной связью
Радиокомпоненты -
Общие сведения
Ряды стандартизованных
значений сопротивлений
Металлизированные
пленочные резисторы
Проволочные резисторы
Конденсаторы -
Общие сведения
Металлические конденсаторы
с воздушным диэлектриком
Пленочные конденсаторы,
изготовленные
металлизацией диэлектрика
Алюминиевые
электролитические
конденсаторы
Основные вопросы,
возникающие при
выборе конденсатора
Общие сведения о
катушках индуктивности
Трансформаторы -
Общие сведения
Трансформаторы.
Намагничивание и потери
Модели трансформаторов
Почему необходимо
использовать трансформаторы
Определение параметров
неизвестного трансформатора
Основные виды
источников питания
Выпрямление переменного
тока
Одиночный накопительный
конденсатор в роли
сглаживающего элемента
Влияние напряжения
пульсаций на выходное
напряжение
Насыщение сердечника
трансформатора
Критерии выбора силового
трансформатора
Источник питания со
сглаживающим дросселем
Номинальное значение
тока дросселя
Выбросы тока и
демпфирующие элементы
Использование накопительного
конденсатора для снижения
высоковольтного напряжения
Частотные характеристики
используемых на практике
LC-фильтров
Широкополосная фильтрация
Выпрямители с умножением
(умножители) напряжения
Классическая схема
последовательного
стабилизатора
Двухтранзисторная схема
последовательного
стабилизатора
Стабилизатор цепи сеточного
смещения с регулируемым
выходным напряжением
Источники питания низкого
напряжения и синфазный шум
Ламповый стабилизатор
напряжения
Способы увеличения
выходного тока стабилизатора
Коэффициент режекции
источника питания
Включение сглаживающих
конденсаторов
Перенапряжения при
включении схемы
Составление предварительной
схемы блока питания
Высоковольтный выпрямитель
и стабилизатор
Особенности смещения
подогревателей ламп
Схема улучшенного
источника питания
Рабочий режим
Увеличение максимально
допустимого Vrrm
Выходной каскад класса А
с несимметричным выходом
Особенности акустических
систем
Неидеальности
трансформаторов
Режимы работы усилительных
приборов. Классы усилителей
Двухтактный выходной каскад
Выходной каскад по
ультралинейной схеме
Трансформаторный катодный
повторитель
Усилители без выходного
трансформатора
Составляющие блока
усилителя мощности
Предоконечный каскад блока
усилителя мощности
Фазоинверсный каскад
Дифференциальный усилитель
или пара с катодной связью
«Согласованный»
фазоинвертор
Общие проблемы
устойчивости усилителей
Подавление первой
доминанты ВЧ составляющей
Низкочастотное
самовозбуждение усилителя
Усилитель Williamson
Усилитель Milliard 5-20
Усилитель Quad II
Выбор выходной лампы
Выбор статической рабочей
точки с учетом Pвых и КНИ
Точное определение
выходного трансформатора
Особенность выпрямление
высоковольтного напряжения
Варианты применения
стабилизатора ВВ напряжения
Требования к каскаду
предоконечного усиления
Определение рабочей точки
предоконечного каскада
Проверка работоспособности
усилителя
Пример разработки
двухтактного УМ
Оптимизация входного и
фазоинверсного каскадов
Расчет R катодного смещения
лампы и R обратной связи
Выбор элементов
оконечного каскада
Разработка усилителей
мощностью более 10 Вт
Активные кроссоверы
и схема Зобеля
Выбор лампы для
оконечного каскада
Требования к предоконечному
каскаду усиления
Источники питания и
постоянная токовая нагрузка
Второй дифференциальный
усилитель и выходной каскад
Первый дифференциальный
усилитель и линейность х-ки
Каскодная схема постоянной
токовой нагрузки
Постоянная токовая нагрузка
первого диф. каскада
Элементы, повышающие ВЧ
устойчивость. Итоговая схема
Схема источника питания
«Потомок от усилителя Beast»
Расчет уровня фонового
шума от ИП
Особенности цифрового
сигнала от компакт-диска
Требования к предусилителю
Технические требования
к линейному каскаду
Традиционный линейный
каскад
Пути достижения заданных
требований и выбор лампы
Основные проблемы
регулирования громкости
Переключаемые аттенюаторы
Расчет переключаемого
аттенюатора
Табличные вычисления для
расчета регулятора громкости
Светочувствительные
резисторы и громкость
Входной переключатель
Частотный корректор RIAA
Влияние провода
звукоснимателя
Требования к блоку
частотной коррекции
Метод частотной коррекции
стандарта RIAA
Раздельное выравнивание
характеристики RIAA
Шумы и влияние входной
емкости входного каскада
Учет собственных
шумов лампы
Улучшение шумовых
характеристик с RIAA
Расчет элементов на 75 мкс
Параметры цепей на
3180 мкс и 318 мкс
Симметричный вход и
подключение звукоснимателя
Симметричный предусилитель
Возможности исключения
линейного каскада
Вариант RIAA с исполь-
зованием лампы типа ЕС8010
Оптимизация характеристик
входного трансформатора
Анализ работы блока RIAA
Практические методы
настройки блока RIAA
Линейный каскад
О межблочных и
акустических кабелях

 

 
 

Рабочий режим. Применение диода для выпрямления переменного тока

Режим работы диода с нагрузкой графоаналитически рассчитывается так же, как и для полупроводникового диода. Однако обычно нельзя пренебрегать падением напряжения на вакуумном диоде, так как оно в зависимости от типа диода составляет единицы, десятки и даже сотни вольт.

Все сказанное о работе выпрямительных схем с полупроводниковыми диодами можно повторить для схем выпрямления с помощью вакуумных диодов. Особенность вакуумных диодов — отсутствие обратного тока. Вакуумные диоды для выпрямления переменного тока электросети (кенотроны) могут работать при высоких обратных напряжениях — сотни и тысячи вольт. Поэтому нет необходимости в последовательном соединении кенотронов.

Для кенотронов, работающих в выпрямителях, опасно короткое замыкание нагрузки. В этом случае все напряжение источника будет приложено к кенотрону и анодный ток станет недопустимо большим. Происходит перегрев катода и его разрушение. Анод также перегревается. Ухудшается вакуум за счет выделения газов из перегретых электродов. Газ ионизируется. Положительные ионы бомбардируют катод, способствуя его перегреву и разрушению.

При выпрямлении токов очень высокой частоты вредно влияет емкость анод — катод диода Са-к. Она состоит из емкости между электродами и емкости между выводными проводниками. Значение Са-к достигает единиц пикофарад у маломощных диодов. На низких частотах эта емкость шунтирующего влияния не оказывает, так как ее сопротивление составляет миллионы Ом. А на частотах в десятки мегагерц и выше сопротивление емкости становится соизмеримым с внутренним сопротивлением диода и даже меньше его. Тогда переменный ток проходит через эту емкость и выпрямляющее действие диода ухудшается.

Например, если диод имеет Ri = = 500 Ом и Са-к = 4 пФ, то при частоте 200 Гц сопротивление емкости

хс = 1/(ω Са-к) = 1012/(2π·200·4) ≈ ≈200·106 Ом = 200 МОм.

Практически через такое сопротивление ток не проходит. Зато при f = 200 МГц сопротивление хс станет равным 200 Ом и будет сильно шунтировать диод.

Для диодов надо учитывать максимальные допустимые значения их параметров.

Если в секунду на анод попадает N электронов и каждый из них обладает энергией mv2/2, то мощность, отдаваемая электронным потоком на нагрев анода,

Ра = Nmv2/2. (16.9)

Энергию электроны получают от ускоряющего поля. Пренебрегая их начальной энергией, можно считать, что mv2/2 qua. Тогда

Ра = Nqua. (16.10)

Произведение Nq есть количество электричества, попадающее за 1 с на анод, т. е. анодный ток iа. Поэтому окончательно

Ра = iaua. (16.11)

Мощность Ра — это потерянная мощность, так как нагрев анода бесполезен и даже вреден. Принято называть Ра мощностью, выделяемой на аноде, или мощностью потерь на аноде. Не следует эту мощность считать максимальным допустимым параметром лампы, так как она может иметь самые различные значения в зависимости от анодного напряжения. Анод нагревается также за счет теплового излучения катода, но Ра есть только мощность электронной бомбардировки. Чем больше Ра, тем сильнее нагрев анода. Он может накалиться докрасна и даже расплавиться.

Максимальная допустимая мощность Pamax зависит от размеров, конструкции, материала анода и способа его охлаждения и составляет от долей ватта до многих киловатт. Чтобы анод не перегревался, должно соблюдаться условие

Pa ≤ Pamax (16.12)

При импульсном режиме мгновенная мощность, выделяемая на аноде, может быть очень большой, но средняя мощность не должна превышать Pamax.

Анодный ток диодов обычно состоит из отдельных импульсов. Максимальное допустимое значение тока для диодов с оксидным катодом обусловлено разрушением оксидного слоя. Для каждого типа диодов характерен максимальный допустимый импульс анодного тока Iamax В диодах для импульсной работы значение Iamax весьма велико, тем больше, чем меньше длительность импульсов и чем больше паузы между ними.

Пульсирующий анодный ток диодов имеет постоянную составляющую Ia ср, которую называют постоянным выпрямленным током. Важным параметром диода является максимальный допустимый постоянный выпрямленный ток Ia срmax.

При работе диода в выпрямителе в течение некоторого времени (часть периода) к диоду приложено отрицательное анодное напряжение, называемое обратным. Важным параметром является максимальное допустимое обратное напряжение Uобрmax. Обратное напряжение не должно превышать максимального допустимого:

Uобр Uобрmax (16.13)

Если Uобр больше Uобрmax, то возможен пробой изоляции, электростатическая эмиссия из анода и выход диода из строя. Кенотроны для высоковольтных выпрямителей имеют Uобрmax до десятков киловольт, маломощные диоды — не более 500 В.

 

 

 

Информация

 

Продолжение

Маломощные диоды, как правило, выпускаются с катодами косвенного накала. Диоды для высоких и сверхвысоких частот делают с возможно меньшей емкостью анод — катод. Кенотроны выпускаются с катодами как прямого, так и косвенного накала. Широкое применение имеют двойные диоды (два диода в одном баллоне).

Наиболее прост диод с катодом прямого накала. К таким лампам можно отнести некоторые высоковольтные кенотроны и большинство мощных кенотронов. У катода косвенного накала вывод делают иногда общим с одним выводом подогревателя. Ряд диодов имеют отдельный вывод катода.

Двойные диоды с катодами прямого накала обычно изображаются упрощенно — с одним катодом. В действительности они имеют два катода, соединенные параллельно или последовательно.

Наиболее универсальные двойные диоды с разделенными катодами имеют отдельные выводы от катодов. Эти диоды нередко используются в двух различных частях схемы. В таких случаях показывают в соответствующих местах половинки лампы. У некоторых двойных диодов ставится металлический экран для устранения паразитной емкостной связи между диодами. От экрана делается вывод. При упрощенном схематическом изображении экран часто не показывают.

 
 
Сайт создан в системе uCoz