Содержание

Общие сведения,
классификация
Устройство и работа диода
Устройство и работа триода
Электронная эмиссия
Термоэлектронные катоды
Особенности устройства
электронных ламп
Физические процессы
Закон степени трех вторых
Анодная характеристика
Параметры
Рабочий режим. Применение
диода для выпрямления
переменного тока
Основные типы
Физические процессы
Токораспределение
Действующее напряжение и
закон степени трех вторых
Характеристики
Параметры
Особенности
Усилительный каскад с
триодом
Параметры усилительного
каскада
Аналитический расчет и
эквивалентные схемы
усилительного каскада
Графоаналитический расчет
режима усиления
Генератор с триодом
Межэлектродные емкости
Каскады с общей сеткой и
общим анодом
Недостатки триодов
Основные типы приемно-
усилительных триодов
Устройство и работа тетрода
Устройство и работа пентода
Схемы включения тетродов
и пентодов
Характеристики тетродов
и пентодов
Параметры тетродов и
пентодов
Межэлектродные емкости
тетродов и пентодов
Устройство и работа
лучевого тетрода
Характеристики и параметры
лучевого тетрода
Рабочий режим тетродов
и пентодов
Пентоды переменной
крутизны
Краткие сведения о
различных типах
тетродов и пентодов
Специальные лампы
Общие сведения
Электростатические
электронно-лучевые трубки
Магнитные электронно-
лучевые трубки
Люминесцентный экран
Краткие сведения о
различных электронно-
лучевых трубках
Электрический разряд
в газах
Тлеющий разряд
Стабилитроны
Тиратроны тлеющего разряда
Индикаторные приборы
Дисплеи
Краткие сведения о
различных газоразрядных
приборах
Фотоэлектронная эмиссия
Электровакуумные
фотоэлементы
Фотоэлектронные умножители
Причины собственных шумов
Шумовые параметры
Межэлектродные емкости
и индуктивности выводов
Инерция электронов
Наведенные токи в
цепях электродов
Входное сопротивление
и потери энергии
Импульсный режим
Основные типы электронных
ламп для СВЧ
Общие сведения
Пролетный клистрон
Отражательный клистрон
Магнетрон
Лампы бегущей и
обратной волны
Амплитрон и карматрон
Надежность и испытание
электровакуумных приборов
Усилитель на триоде
с общим катодом
Ограничения по выбору
рабочей точки
Режим в рабочей точке
Катодное смещение
Выбор величины
сопротивления резистора
в цепи сетки
Выбор выходного
разделительного
конденсатора
Вредное влияние проходной
емкости лампы и пути
его уменьшения
Применение
экранированных ламп
Каскод (каскодная схема)
Катодный повторитель
Каскад с общим катодом
как приемник
неизменяющегося тока
Пентоды в качестве
приемников
неизменяющегося тока
Катодный повторитель
с активной нагрузкой
Катодный повторитель Уайта
μ-повторитель
Выбор верхней лампы для
μ -повторителя
Параллельно управляемый
двухламповый усилитель
(SRPP)
β-повторитель
Дифференциальная пара
(дифференциальный каскад)
Коэффициент реакции
питающего напряжения
(PSRR)
дифференциальной пары
Полупроводниковые
приемники неизменяющегося
тока для
дифференциальной пары
Использование транзисторов
в качестве активной нагрузки
для электронных ламп
Классификация искажений.
Принципы оценки линейных
искажений
Принципы измерения
нелинейных искажений
Измерение и интерпретация
искажений
Совершенствование
измерений нелинейных
гармонических искажений
Цифровая обработка сигналов
Особенности проектирования
усилителей с малыми
искажениями
Работа с сеточным током
и нелинейные искажения
Уменьшение искажений
подавлением (компенсацией)
Проблемы смещения
по постоянному току
Выбор электронной лампы по
критерию низких искажений
Проблема сопряжения одного
каскада со следующим
Усилитель класса А для
электромагнитных головных
телефонов с непосредств.
междукаскадной связью
Радиокомпоненты -
Общие сведения
Ряды стандартизованных
значений сопротивлений
Металлизированные
пленочные резисторы
Проволочные резисторы
Конденсаторы -
Общие сведения
Металлические конденсаторы
с воздушным диэлектриком
Пленочные конденсаторы,
изготовленные
металлизацией диэлектрика
Алюминиевые
электролитические
конденсаторы
Основные вопросы,
возникающие при
выборе конденсатора
Общие сведения о
катушках индуктивности
Трансформаторы -
Общие сведения
Трансформаторы.
Намагничивание и потери
Модели трансформаторов
Почему необходимо
использовать трансформаторы
Определение параметров
неизвестного трансформатора
Основные виды
источников питания
Выпрямление переменного
тока
Одиночный накопительный
конденсатор в роли
сглаживающего элемента
Влияние напряжения
пульсаций на выходное
напряжение
Насыщение сердечника
трансформатора
Критерии выбора силового
трансформатора
Источник питания со
сглаживающим дросселем
Номинальное значение
тока дросселя
Выбросы тока и
демпфирующие элементы
Использование накопительного
конденсатора для снижения
высоковольтного напряжения
Частотные характеристики
используемых на практике
LC-фильтров
Широкополосная фильтрация
Выпрямители с умножением
(умножители) напряжения
Классическая схема
последовательного
стабилизатора
Двухтранзисторная схема
последовательного
стабилизатора
Стабилизатор цепи сеточного
смещения с регулируемым
выходным напряжением
Источники питания низкого
напряжения и синфазный шум
Ламповый стабилизатор
напряжения
Способы увеличения
выходного тока стабилизатора
Коэффициент режекции
источника питания
Включение сглаживающих
конденсаторов
Перенапряжения при
включении схемы
Составление предварительной
схемы блока питания
Высоковольтный выпрямитель
и стабилизатор
Особенности смещения
подогревателей ламп
Схема улучшенного
источника питания
Рабочий режим
Увеличение максимально
допустимого Vrrm
Выходной каскад класса А
с несимметричным выходом
Особенности акустических
систем
Неидеальности
трансформаторов
Режимы работы усилительных
приборов. Классы усилителей
Двухтактный выходной каскад
Выходной каскад по
ультралинейной схеме
Трансформаторный катодный
повторитель
Усилители без выходного
трансформатора
Составляющие блока
усилителя мощности
Предоконечный каскад блока
усилителя мощности
Фазоинверсный каскад
Дифференциальный усилитель
или пара с катодной связью
«Согласованный»
фазоинвертор
Общие проблемы
устойчивости усилителей
Подавление первой
доминанты ВЧ составляющей
Низкочастотное
самовозбуждение усилителя
Усилитель Williamson
Усилитель Milliard 5-20
Усилитель Quad II
Выбор выходной лампы
Выбор статической рабочей
точки с учетом Pвых и КНИ
Точное определение
выходного трансформатора
Особенность выпрямление
высоковольтного напряжения
Варианты применения
стабилизатора ВВ напряжения
Требования к каскаду
предоконечного усиления
Определение рабочей точки
предоконечного каскада
Проверка работоспособности
усилителя
Пример разработки
двухтактного УМ
Оптимизация входного и
фазоинверсного каскадов
Расчет R катодного смещения
лампы и R обратной связи
Выбор элементов
оконечного каскада
Разработка усилителей
мощностью более 10 Вт
Активные кроссоверы
и схема Зобеля
Выбор лампы для
оконечного каскада
Требования к предоконечному
каскаду усиления
Источники питания и
постоянная токовая нагрузка
Второй дифференциальный
усилитель и выходной каскад
Первый дифференциальный
усилитель и линейность х-ки
Каскодная схема постоянной
токовой нагрузки
Постоянная токовая нагрузка
первого диф. каскада
Элементы, повышающие ВЧ
устойчивость. Итоговая схема
Схема источника питания
«Потомок от усилителя Beast»
Расчет уровня фонового
шума от ИП
Особенности цифрового
сигнала от компакт-диска
Требования к предусилителю
Технические требования
к линейному каскаду
Традиционный линейный
каскад
Пути достижения заданных
требований и выбор лампы
Основные проблемы
регулирования громкости
Переключаемые аттенюаторы
Расчет переключаемого
аттенюатора
Табличные вычисления для
расчета регулятора громкости
Светочувствительные
резисторы и громкость
Входной переключатель
Частотный корректор RIAA
Влияние провода
звукоснимателя
Требования к блоку
частотной коррекции
Метод частотной коррекции
стандарта RIAA
Раздельное выравнивание
характеристики RIAA
Шумы и влияние входной
емкости входного каскада
Учет собственных
шумов лампы
Улучшение шумовых
характеристик с RIAA
Расчет элементов на 75 мкс
Параметры цепей на
3180 мкс и 318 мкс
Симметричный вход и
подключение звукоснимателя
Симметричный предусилитель
Возможности исключения
линейного каскада
Вариант RIAA с исполь-
зованием лампы типа ЕС8010
Оптимизация характеристик
входного трансформатора
Анализ работы блока RIAA
Практические методы
настройки блока RIAA
Линейный каскад
О межблочных и
акустических кабелях

 

 
 

Влияние провода звукоснимателя и сопротивления по постоянной составляющей подвижной катушки его головки

Хотя данный факт, как правило, игнорируется, сопротивление проводов тонарма звукоснимателя может оказаться чрезвычайно важным параметром, особенно в тех случаях, когда подвижная катушка его головки обладает низким выходным сопротивлением согласуется с использованием трансформатора, так как переходная характеристика трансформатора в значительной мере определяется сопротивлением источника тока.

Автор измерил величину сопротивления микропровода длиной 5 м, использующегося в тонарме его проигрывателя, и обнаружил, что погонное сопротивление составляет 0,45 Ом/м. Поэтому, для стандартного тонарма, имеющего размер порядка 229 мм, будет необходим провод длиной 600 мм для каждого канала (петля к головке и обратно), сопротивление которого в итоге составит 0,27 Ом. Один метр витой пары серебряного провода с диаметром 0,7 мм, проложенного от основания тонарма до предусилителя, добавит еще 0,12 Ом, обеспечивая полное сопротивление цепи звукоснимателя 0,39 Ом. Сейчас достаточно популярны различные модификации проводов, используемых для цепи звукоснимателя, поэтому иногда ряд производителей с целью уменьшения количества соединений в цепи использует цельный микропровод, проходящий внутри тонарма, для соединения звукоснимателя с входными клеммами предусилителя. Длина такого проводника в 600 мм является типичной, следовательно, сопротивление цепи возрастает до 0,81 Ом. Для оценки полученной цифры следует отметить, что для подвижной катушки головки звукоснимателя уже упоминавшегося проигрывателя фирмы Ortofon Quattro указанное в паспорте сопротивление составляет 3 Ом.

Значительные амплитуды колебаний на высоких частотах приводят к высоким значениям ускорений для кончика воспроизводящей иглы. С целью снижения нагрузок, возникающих на звуковой дорожке грампластинки при вертикальных перемещениях иглы (сила по закону Ньютона F = та) производители звукоснимателей борются за снижение массы иглы. Наиболее эффективным способом снижения массы иглы является использование меньшего по размеру алмаза, хотя для игл и так используются самые мелкие алмазы, что делает гораздо сложнее задачу их крепления в процессе огранки и шлифования. Однако немаловажным обстоятельством является и масса катушки в головке с подвижной катушкой, поэтому эффективным способом снижения массы также оказывается уменьшение диаметра используемого провода. К сожалению, производители звукоснимателей не всегда доводят до потребителей техническую информацию, касающуюся совершенствования производимой ими продукции, поэтому сопротивление катушки, измеряемое на постоянном токе, может оказаться выше, чем указанное в технической документации. Недавно автор при измерении сопротивления на постоянном токе для звукоснимателя, имеющего заявленное номинальное значение сопротивления 6 Ом, получил величину 10,5 Ом.

Идеальной точкой для измерения сопротивления по постоянному току звукоснимателя является входная клемма предусилителя, так как при этом учитывается сопротивление проводов тонарма. Тончайший провод звуковой катушки головки звукоснимателя может быть поврежден при прохождении по нему больших токов, поэтому автор предварительно замерил ток измерительного прибора при использовании нижних пределов измерения сопротивлений и установил, что ток составляет 0,1 мА, достаточно маленькое значение, которое не вызовет повреждений катушки звукоснимателя. Чтобы не было сомнений, следует также изучить паспорт измерительного прибора и запомнить значение максимального тока, который будет протекать в цепи при измерениях на пределе, предназначенном для самых меньших значений сопротивления (а именно такой предел необходимо будет использовать).

Проблемы разработки блока частотной коррекции (пассивного эквалайзера) RIAA

Если в усилителе мощности камнем преткновения чаще всего оказывается фазоинверсный каскад, то для предусилителя ахиллесовой пятой, без всяких сомнений, оказывается блок частотной коррекции (пассивный эквалайзер) проигрывателя грампластинок, соответствующий стандарту RIAA.

Данный блок должен одновременно удовлетворять огромному количеству взаимоисключающих требований, поэтому его расчет и исполнение переполнены всевозможными проблемами.

При рассмотрении усилителей мощности для получения необходимого результата, прежде всего, внимание было уделено классическим схемам и тем подходам, которые были в них использованы. К сожалению, классической схемы блока частотной коррекции не существует, их диапазон простирается от вполне посредственных по своим качествам, до вполне незамысловатых.

Такое положение вещей не всегда определялось недостаточной компетентностью участи проектировщиков существующих систем. В их распоряжении были компоненты худшего качества, они не использовали стабилизированные высоковольтные источники питания, как это принято делать сейчас. Более того, основным фактором зачастую становилось просто отсутствие потребности разрабатывать действительно высококлассные проигрыватели грампластинок из-за того, что сигнал, поступающий с проигрывателя, не отличался высоким качеством. Долгоиграющая пластинка считалась источником сигнала весьма посредственного качества, для которого требовались фильтры нижних частот на уровне 8 кГц для снижения помех, вносимых пылинками и треском. Поразительно, но факт, — всегда существовали и были доступны проигрыватели и звукосниматели действительно высокого качества, но, более чем посредственные, механические, либо акустические свойства подавляющего большинства звукоснимателей и конструкций в целом создавали положение, при котором инженеры-электронщики оказались вне зоны критики.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Информация

 

Продолжение

Совершенно аналогично тому, как это делалось в случае с линейным каскадом, прежде всего необходимо перечислить полный перечень требований к блоку частотной коррекции проигрывателя грампластинок, удовлетворяющему требованиям стандарта RIAA.

1. Низкий уровень шумов и отсутствие фона сетевого питания. Следует признать, что электронные лампы не являются такими же малошумящими, как последние поколения малошумящих операционных усилителей, выполненных на интегральных микросхемах, но осуществляя накал подогревателей, при помощи источников постоянного тока, можно практически полностью снять проблему фона сетевого питания и несколько снизить шум ламп. Пентоды желательно сразу исключить из рассмотрения, однако, к использованию триодов также необходимо будет подходить с некоторой осторожностью.

2. Постоянные значения входного сопротивления и емкости. Это требование может показаться очевидным, но многие конструкции оказываются несостоятельными из-за того, что подвижные магнитные части головок звукоснимателей оказываются особенно чувствительными к изменениям электрической нагрузки.

3. Точность выполнения частотной коррекции. Кажется совершенно неправдоподобным, хотя это и так, но огромное количество разработок (как древних, так и современных) имеет совершенно неправильно заданные параметры частотной коррекции стандарта RIAA. Это может быть связано как с ошибками при использовании для расчетов изначально верных математических выражений, так и с ошибками определения условий нагрузки.

4. Необходимо учитывать плохую способность к быстрому реагированию на изменения параметров компонентов. Лампы подвержены естественному старению, и по мере развития процесса значение сопротивления rа возрастает. Аналогично этому, при замене лампы, значение проходной емкости Cag может совершенно не совпадать со значением, которое было у прежней лампы. Любой из указанных эффектов может весьма ощутимо повлиять на точность частотной коррекции по стандарту RIAA.

 
 
Сайт создан в системе uCoz