Итак, применение экранированных ламп (пентодов) позволяет свести на нет проблему вредного влияния проходной емкости,
однако ухудшает показатели качества усилителя по нелинейным искажениям и шумам. Это противоречие успешно разрешается применением
составной, так называемой каскодной, схемы, обладающей преимуществом пентодов, но лишенной его недостатков (рис. 3.16).
Рис. 3.16 Каскад (каскодная схема)
Каскодная схема имеет значительное сходство с рассмотренным выше усилителем на пентоде в расположении компонентов (R1,
R2, С1,), что по конфигурации даже несколько напоминает цепь питания экранирующей
сетки. В действительности, каскадная схема, как и лампа пентод обладает очень большим внутренним сопротивлением га, примерно
равным га нижней электронной лампы, умноженное на (μ+ 1) верхней электронной лампы.
Рассмотрим работу каскодной схемы. Верхняя электронная лампа работает на обычную резистивную анодную нагрузку Rh,
однако управление (модулирование) входного напряжения сетка-катод VCK осуществляется не изменением напряжения
управляющей сетки при фиксированном потенциале катода, а наоборот: потенциал управляющей сетки остается неизменным (она по
переменному току соединена с землей конденсатором), а изменяется напряжение на катоде. Поскольку, управляющая сетка верхней лампы заземлена по переменному
току, она выполняет роль электростатического экрана между катодом и анодом верхней лампы, аналогично тому, как экранирующая
сетка в пентоде является экраном между управляющей сеткой и анодом. Таким образом, проходная емкость каскодной схемы, то
есть емкость между управляющей сеткой нижней лампы и анодом верхней лампы оказывается очень малой, что сводит на нет и эффект
Миллера, а внутренне сопротивление rа оказывается большим. В конечном итоге, электростатическое
экранирование входной цепи от выходной, как в пентоде (путем заземления по переменному току экранирующей сетки), так и в
каскодной схеме (путем заземления по переменному току управляющей сетки верхней лампы), значительно уменьшает степень влияния
управляющей цепи на напряжение, падающего на анодной нагрузке RH.
Постоянное напряжение на управляющей сетке верхней лампы при помощи резистивного делителя напряжения устанавливается
таким, чтобы ее рабочая точка находилось на середине линейного участка статических характеристик. Это напряжение положительное
относительно земли, однако, отрицательное относительно катода верхней лампы, потенциал которого выше, нежели потенциал сетки.
Это означает, что ток управляющей сетки верхней лампы отсутствует, в отличие оттока экранирующей сетки пентода, что сводит
на нет и проблему шумов, возникающих за счет токораспределения в пентоде. Наконец, отметим, что верхняя лампа, в отличие
от нижней, не является фазоинвертирующей, поскольку по переменному току заземлен не катод, а управляющая сетка. Такую схему
включения называют «общая сетка», в отличие от ранее рассмотренных нами схем, называемых «общий катод».
Что же касается нижней электронной лампы, то она работает как обычный каскад на триоде с общим катодом, однако, в отличие
от ранее рассмотренных схем, роль ее анодной нагрузки выполняет цепь катода верхней лампы. Так как динамическое сопротивление
со стороны катода верхней лампы, как правило, небольшое, коэффициент усиления нижней электронной лампы небольшой, по этой
причине его емкость Миллера также будет незначительной.
Так как верхняя лампа представляет собой для нижней лампы анодную нагрузку с невысокой величиной сопротивления, то нижняя
лампа не может работать с большим размахом выходного напряжения. В противном случае это приведет к значительным нелинейным
искажениям. К счастью, основной вклад в коэффициент усиления каскодной схемы обеспечивается верхней лампой, что в значительной
степени решает эту проблему.
Важно отметить, что в каскодной схеме очень желательно применять специально разработанные именно для таких схем электронные
лампы, а не случайные. Это даст гарантию высоких показателей качества спроектированного усилителя. Примерами ламп для каскодной
схемы могут служить сочетания следующих типов: ЕСС88 и 6DJ8 или ЕСС88 и 6922 (серия ламп повышенного качества).
Обратимся теперь к примеру разработки каскодной схемы. Обычно, величина постоянного напряжения на аноде нижней лампы
выбирается не более одной трети и не менее одной четверти от общей величины ВН, приложенного между анодом верхней лампы и
землей. Пусть напряжение анодного питания каскада ВН равно 285 В, а величина постоянного напряжения
на аноде нижней лампы составляет 75 В. Тогда падение постоянного напряжения между катодом
и анодом верхней лампы составит 210В (рис. 3.16).
Величины анодной нагрузки и напряжения смещения между управляющей сеткой и катодом верхней лампы выбираются обычным вышеописанным
способом — при помощи нагрузочной линии (рис. 3.17). В рассматриваемом примере RH = 100 кОм, VCK
= —2.5 В. Размах переменного напряжения на аноде при этом составляет Va = 76,5 В, что дает особенно линейную
рабочую точку. В этом случае анодный ток покоя будет равен 1,34 мА.
Рис. 3.17 Выбор рабочей точки верхней электронной лампы каскодной схемы
Поскольку анод нижней электронной лампы, а, следовательно, и катод верхней лампы, находятся под положительным потенциалом
в 75 В, а на управляющей сетке верхней электронной лампы требуется обеспечить напряжение смещения VCK
—2,5 В относительно катода, это означает, что на управляющую сетку верхней электронной лампы требуется подать постоянное
напряжение 72,5 В относительно общего провода (земли). Поскольку через сетку верхней электронной лампы ток не течет (в силу
того, что ее потенциал относительно катода отрицательный), необходимое постоянное напряжение на ней относительно земли устанавливается
делителем напряжения, и полностью определяет режим верхнего каскада, включенного по схеме с общей сеткой. При расчете сопротивлений
резисторов этого делителя нужно быть очень внимательным, чтобы не превысить максимально допустимое сопротивление утечки
сетки верхней электронной лампы, которое для Е88СС/6922 равно 1 МОм. В рассматриваемом примере общее сопротивление схемы
делителя напряжения равно 560 кОм, что укладывается в допустимые пределы. При расчете делителя, разумеется, предполагалось,
что внутренне сопротивление источника питания постоянного тока ВН равно нулю. Величина блокировочного конденсатора,
обеспечивающего заземление управляющей сетки верхней
лампы по переменному току, рассчитывается также, как и для рассмотренного выше примера с пентодом (с учетом общего сопротивления
делителя напряжения) и по тому же критерию: частота среза RC цепи должна составлять 1 Гц. По результатам расчета нам нужен
конденсатор 0,33 мкФ, что значительно меньше по сравнению с конденсатором 3,3 мкФ для блокировки экранирующей сетки пентода
EF86 в предыдущем примере.
При расчете режима нижней лампы будет удобнее воспользоваться не выходными (анодными) статическими характеристиками лампы,
а проходными (анодно-сеточными), показывающими зависимость анодного тока от напряжения на управляющей сетке при фиксированном
анодном напряжении. Проходные характеристики рассматриваемой лампы приведены на рис. 3.18.
Рис. 3.18 Сеточно-анодные характеристики триода
Выше мы сделали вывод о том, что ток управляющей сетки верхней лампы отсутствует. Это значит, что ее ток анода равен
току катода. В то же время, глядя на схему, очевидно, что ток катода верхней лампы равен току анода нижней лампы. Таким образом,
токи анодов обеих ламп равны. Выше мы задались значением постоянного напряжения на аноде нижней лампы равным 75 В. Теперь
на семействе проходных характеристик лампы (см. рис. 3.18) находим (или достраиваем дополнительно) статическую характеристику,
снятую при фиксированном анодном напряжении, равным 75 В, и находим на ней точку, соответствующую найденной выше величине
анодного тока (одинаковой для обеих ламп) равной Iа = 1,34 мА (токи верхнего и нижнего анодов равны). Найденная
точка и есть рабочая точка нижней электронной лампы, соответствующая (по ой же статической характеристике) напряжению на
управляющей сетке VCK около 2,6 В. Теперь на семействе анодных статических характеристик находим точку,
соответствующую анодному напряжению Va = 75 В и анодному току Iа = 1,34 мА. Через
найденную точку будет походить анодная характеристика, соответствующая напряжению на управляющей сетке равному VCK
= 2,4 В. Несовпадение найденных графически напряжений смещения объясняется просто: графический метод расчета предполагает
линейность рабочей области статических характеристик, однако, эта небольшая погрешность вполне допустима. На практике достаточно
лишь усреднить найденные значения: таким образом, VCK = 2,5 В. Теперь можно рассмотренным в предыдущих
примерах способом подсчитать необходимую величину резистора катодного автосмещения для нижней лампы. По результатам расчета
RH = 1,8 кОм.
Поскольку каскодная схема содержит нижнюю лампу, включенную с общим катодом, и верхнюю лампу, включенную с общей сеткой,
то такой каскад является инвертирующим, как и одиночный каскад на триоде или пентоде с общим катодом. Объясняется это просто
— нижняя лампа с общим катодом инвертирует усиливаемый сигнал, а верхняя с общей сеткой — нет.
Коэффициент усиления каскодной схемы можно рассчитать по следующей формуле (индексы «1» соответствуют нижней электронной
лампе, а индексы «2» — верхней электронной лампе). Разумеется, расчет ведется в предположении равных токов анодов ламп.
Итак, необходимо найти крутизну gm нижней электронной лампы. Это легко делается, используя проходные характеристики
лампы, измерением угла наклона в рабочей точке, например, методом приращений.
Также необходимо найти статическое внутренне сопротивление rа верхней лампы, но это не так легко,
так как отсутствует необходимая статическая характеристика, соответствующая Vc = —2,5V. Здесь возможно
два варианта: либо достроить нужную статическую характеристику, воспользовавшись семейством проходных характеристик, либо
интерполировать по соседним характеристикам. Воспользуемся вторым способом, взяв статические характеристики по обе стороны
от рабочей точки (тем более, что в рассматриваемом примере они симметричны относительно нее). Итак, берем две характеристики,
соответствующие Vc = —2V и Vc = — 3V (рис. 3.19).
Рис. 3.19 Нахождение rа для двух значений Vc
Следовательно, можно считать, что при Vc = 2,5 В, rа = 6 кОм.
Наконец, графическое нахождение статического внутреннего коэффициента усиления μ в рабочей точке обеих электронных ламп
дает одинаковое значение: μ = 32,5.
Подставив все эти значения в формулу, найдем коэффициент усиления каскодной схемы равный 214. Иногда расчет ведут по
сильно упрощенной формуле Av = gm1 * Rh, в результате чего будем иметь коэффициент
усиления равный 270, который завышен на 2 дБ по сравнению с расчетом по точной формуле. Тем не менее, приближенный расчет
бывает полезна, — в качестве предварительной оценки коэффициента усиления на приемлемость.
Теперь можно подсчитать коэффициенты усиления нижней и верхней ламп в отдельности. Это позволяет найти размах анодного
напряжения на нижней лампе, что позволит оценить линейность (обычным способом по статическим характеристикам) и емкость Миллера.
Коэффициент усиления верхней лампы легко определяется по нагрузочной линии (как и в предыдущих примерах). В результате получаем
коэффициент усиления 30. Коэффициент усиления нижней лампы в таком случае (исходя из общего коэффициента усиления и коэффициента
усиления верхней лампы) должен быть равен 7,1. Теперь вычислим емкость Миллера для нижней лампы: Проходная емкость лампы
типа Е88СС равна Сас = 1,4 пФ, таким образом, емкость Миллера:
Так как эта величина небольшая, то нужно учесть и паразитные емкости — 3,3 пФ — входная емкость лампы, и ориентировочно
3 пФ внешние (монтажные) паразитные емкости, что дает общее значение 18 пФ. Это не так хорошо, как в случае применения пентода, который мы рассматривали ранее,
но если бы каскад на пентоде мог бы работать при такой же анодной нагрузке в 100 кОм, то его коэффициент усиления и емкость
Миллера были бы примерно вдвое больше, что даст соизмеримый результат. Да и при любом раскладе каскадная схема лишена основных
недостатков усилителей на пентодах. Величины резистора катодного автосмещения нижней лампы и его развязывающего конденсатора
вычисляются обычным для триода способом (см. выше).
Выше уже обращалось внимание на то, что нижняя лапа работает с небольшим коэффициентом усиления при малом размахе анодного
напряжения, что негативно сказывается на линейности каскада. Исправить эту ситуацию можно путем увеличения анодного тока
нижней лампы, что легко обеспечивается, путем включения между ее анодом и источником анодного питания ВН дополнительного
резистора (рис. 3.20). Разумеется, в этом случае, анодные токи нижней и верхней ламп перестают быть равными, как это было
в предыдущем примере.
Рис. 3.20 Увеличение Iа нижней электронной лампы в каскаде
Как крайний пример — может понадобиться каскод с малыми шумами и низким искажением. Используем половину сдвоенного триода
6SN7 как верхнюю электронную лампу, таким образом можно установить ток анода равный 8 мА (при этом токе хорошая линейность).
Тем не менее, если нижняя электронная лампа будет соединенный по схеме триода пентод Е81, пропускающий 45 мА, то потребуются
дополнительные 37 мА. Если Va = 100 В для E810F и ВН = 400 В, то:
Все схемы, которые включают в себя рабочие катоды при напряжении значительно выше нулевого имеют проблемы из-за токов
утечки нити накала/катода и максимальное допустимое напряжение между нитью накала и катодом Vнк.
Это не редкость, что катод лампы не шунтируется и, следовательно, имеет на себе напряжение сигнала. Если, как в каскоде,
коэффициент усиления катода верхней электронной лампы низкий, и мы используем прибор, потому что у него хорошая шумовая характеристика,
то вероятно, что напряжение сигнала на этом катоде очень небольшое, возможно только несколько милливольт. Токи утечки через
изоляцию нити накала/катода становиться больше при повышении Vнк, таким образом, комбинация
Vнк = 75 В со слабым напряжением сигнала, означает, что влияние может быть значительно.
Автор однажды сделал схему, используя электронные лампы, которые были рассчитаны на Vнк(макс)
=150 В. Электронные лампы работали при Vнк = 120 В и имели низкочастотный шум, который устранялся
только подключением соответствующих нитей накала к источнику питания 150 В постоянного тока. Имеется понятное нежелание делать
это, потому что это означает, что необходимы два или более источника питания нитей накала, один подключен к земле, как обычно,
а другой подключен к высокому напряжению. Мы вернемся к этой практической проблеме позже.
Радиолюбительские схемы
|