Содержание

Общие сведения,
классификация
Устройство и работа диода
Устройство и работа триода
Электронная эмиссия
Термоэлектронные катоды
Особенности устройства
электронных ламп
Физические процессы
Закон степени трех вторых
Анодная характеристика
Параметры
Рабочий режим. Применение
диода для выпрямления
переменного тока
Основные типы
Физические процессы
Токораспределение
Действующее напряжение и
закон степени трех вторых
Характеристики
Параметры
Особенности
Усилительный каскад с
триодом
Параметры усилительного
каскада
Аналитический расчет и
эквивалентные схемы
усилительного каскада
Графоаналитический расчет
режима усиления
Генератор с триодом
Межэлектродные емкости
Каскады с общей сеткой и
общим анодом
Недостатки триодов
Основные типы приемно-
усилительных триодов
Устройство и работа тетрода
Устройство и работа пентода
Схемы включения тетродов
и пентодов
Характеристики тетродов
и пентодов
Параметры тетродов и
пентодов
Межэлектродные емкости
тетродов и пентодов
Устройство и работа
лучевого тетрода
Характеристики и параметры
лучевого тетрода
Рабочий режим тетродов
и пентодов
Пентоды переменной
крутизны
Краткие сведения о
различных типах
тетродов и пентодов
Специальные лампы
Общие сведения
Электростатические
электронно-лучевые трубки
Магнитные электронно-
лучевые трубки
Люминесцентный экран
Краткие сведения о
различных электронно-
лучевых трубках
Электрический разряд
в газах
Тлеющий разряд
Стабилитроны
Тиратроны тлеющего разряда
Индикаторные приборы
Дисплеи
Краткие сведения о
различных газоразрядных
приборах
Фотоэлектронная эмиссия
Электровакуумные
фотоэлементы
Фотоэлектронные умножители
Причины собственных шумов
Шумовые параметры
Межэлектродные емкости
и индуктивности выводов
Инерция электронов
Наведенные токи в
цепях электродов
Входное сопротивление
и потери энергии
Импульсный режим
Основные типы электронных
ламп для СВЧ
Общие сведения
Пролетный клистрон
Отражательный клистрон
Магнетрон
Лампы бегущей и
обратной волны
Амплитрон и карматрон
Надежность и испытание
электровакуумных приборов
Усилитель на триоде
с общим катодом
Ограничения по выбору
рабочей точки
Режим в рабочей точке
Катодное смещение
Выбор величины
сопротивления резистора
в цепи сетки
Выбор выходного
разделительного
конденсатора
Вредное влияние проходной
емкости лампы и пути
его уменьшения
Применение
экранированных ламп
Каскод (каскодная схема)
Катодный повторитель
Каскад с общим катодом
как приемник
неизменяющегося тока
Пентоды в качестве
приемников
неизменяющегося тока
Катодный повторитель
с активной нагрузкой
Катодный повторитель Уайта
μ-повторитель
Выбор верхней лампы для
μ -повторителя
Параллельно управляемый
двухламповый усилитель
(SRPP)
β-повторитель
Дифференциальная пара
(дифференциальный каскад)
Коэффициент реакции
питающего напряжения
(PSRR)
дифференциальной пары
Полупроводниковые
приемники неизменяющегося
тока для
дифференциальной пары
Использование транзисторов
в качестве активной нагрузки
для электронных ламп
Классификация искажений.
Принципы оценки линейных
искажений
Принципы измерения
нелинейных искажений
Измерение и интерпретация
искажений
Совершенствование
измерений нелинейных
гармонических искажений
Цифровая обработка сигналов
Особенности проектирования
усилителей с малыми
искажениями
Работа с сеточным током
и нелинейные искажения
Уменьшение искажений
подавлением (компенсацией)
Проблемы смещения
по постоянному току
Выбор электронной лампы по
критерию низких искажений
Проблема сопряжения одного
каскада со следующим
Усилитель класса А для
электромагнитных головных
телефонов с непосредств.
междукаскадной связью
Радиокомпоненты -
Общие сведения
Ряды стандартизованных
значений сопротивлений
Металлизированные
пленочные резисторы
Проволочные резисторы
Конденсаторы -
Общие сведения
Металлические конденсаторы
с воздушным диэлектриком
Пленочные конденсаторы,
изготовленные
металлизацией диэлектрика
Алюминиевые
электролитические
конденсаторы
Основные вопросы,
возникающие при
выборе конденсатора
Общие сведения о
катушках индуктивности
Трансформаторы -
Общие сведения
Трансформаторы.
Намагничивание и потери
Модели трансформаторов
Почему необходимо
использовать трансформаторы
Определение параметров
неизвестного трансформатора
Основные виды
источников питания
Выпрямление переменного
тока
Одиночный накопительный
конденсатор в роли
сглаживающего элемента
Влияние напряжения
пульсаций на выходное
напряжение
Насыщение сердечника
трансформатора
Критерии выбора силового
трансформатора
Источник питания со
сглаживающим дросселем
Номинальное значение
тока дросселя
Выбросы тока и
демпфирующие элементы
Использование накопительного
конденсатора для снижения
высоковольтного напряжения
Частотные характеристики
используемых на практике
LC-фильтров
Широкополосная фильтрация
Выпрямители с умножением
(умножители) напряжения
Классическая схема
последовательного
стабилизатора
Двухтранзисторная схема
последовательного
стабилизатора
Стабилизатор цепи сеточного
смещения с регулируемым
выходным напряжением
Источники питания низкого
напряжения и синфазный шум
Ламповый стабилизатор
напряжения
Способы увеличения
выходного тока стабилизатора
Коэффициент режекции
источника питания
Включение сглаживающих
конденсаторов
Перенапряжения при
включении схемы
Составление предварительной
схемы блока питания
Высоковольтный выпрямитель
и стабилизатор
Особенности смещения
подогревателей ламп
Схема улучшенного
источника питания
Рабочий режим
Увеличение максимально
допустимого Vrrm
Выходной каскад класса А
с несимметричным выходом
Особенности акустических
систем
Неидеальности
трансформаторов
Режимы работы усилительных
приборов. Классы усилителей
Двухтактный выходной каскад
Выходной каскад по
ультралинейной схеме
Трансформаторный катодный
повторитель
Усилители без выходного
трансформатора
Составляющие блока
усилителя мощности
Предоконечный каскад блока
усилителя мощности
Фазоинверсный каскад
Дифференциальный усилитель
или пара с катодной связью
«Согласованный»
фазоинвертор
Общие проблемы
устойчивости усилителей
Подавление первой
доминанты ВЧ составляющей
Низкочастотное
самовозбуждение усилителя
Усилитель Williamson
Усилитель Milliard 5-20
Усилитель Quad II
Выбор выходной лампы
Выбор статической рабочей
точки с учетом Pвых и КНИ
Точное определение
выходного трансформатора
Особенность выпрямление
высоковольтного напряжения
Варианты применения
стабилизатора ВВ напряжения
Требования к каскаду
предоконечного усиления
Определение рабочей точки
предоконечного каскада
Проверка работоспособности
усилителя
Пример разработки
двухтактного УМ
Оптимизация входного и
фазоинверсного каскадов
Расчет R катодного смещения
лампы и R обратной связи
Выбор элементов
оконечного каскада
Разработка усилителей
мощностью более 10 Вт
Активные кроссоверы
и схема Зобеля
Выбор лампы для
оконечного каскада
Требования к предоконечному
каскаду усиления
Источники питания и
постоянная токовая нагрузка
Второй дифференциальный
усилитель и выходной каскад
Первый дифференциальный
усилитель и линейность х-ки
Каскодная схема постоянной
токовой нагрузки
Постоянная токовая нагрузка
первого диф. каскада
Элементы, повышающие ВЧ
устойчивость. Итоговая схема
Схема источника питания
«Потомок от усилителя Beast»
Расчет уровня фонового
шума от ИП
Особенности цифрового
сигнала от компакт-диска
Требования к предусилителю
Технические требования
к линейному каскаду
Традиционный линейный
каскад
Пути достижения заданных
требований и выбор лампы
Основные проблемы
регулирования громкости
Переключаемые аттенюаторы
Расчет переключаемого
аттенюатора
Табличные вычисления для
расчета регулятора громкости
Светочувствительные
резисторы и громкость
Входной переключатель
Частотный корректор RIAA
Влияние провода
звукоснимателя
Требования к блоку
частотной коррекции
Метод частотной коррекции
стандарта RIAA
Раздельное выравнивание
характеристики RIAA
Шумы и влияние входной
емкости входного каскада
Учет собственных
шумов лампы
Улучшение шумовых
характеристик с RIAA
Расчет элементов на 75 мкс
Параметры цепей на
3180 мкс и 318 мкс
Симметричный вход и
подключение звукоснимателя
Симметричный предусилитель
Возможности исключения
линейного каскада
Вариант RIAA с исполь-
зованием лампы типа ЕС8010
Оптимизация характеристик
входного трансформатора
Анализ работы блока RIAA
Практические методы
настройки блока RIAA
Линейный каскад
О межблочных и
акустических кабелях

 

 
 

Одиночный накопительный конденсатор в роли сглаживающего элемента

Вне зависимости от того, используется ли мостовая схема выпрямления или схема с отводом от центральной точки во вторичной обмотке, форма напряжения, которая будет поступать в последующие цепи схемы, будет одинакова. Хотя напряжение после выпрямления и имеет одну полярность, это напряжение не является постоянным сглаженным. Назначение сглаживающих элементов (одиночных, либо цепей фильтрации), включаемым на выход выпрямителя, заключается в том, чтобы снизить пульсации напряжения до такого уровня, который является либо приемлемым для питания усилителя, либо таковым, чтобы остаток пульсаций мог подавить стабилизатор напряжения.

Самый простой способ сгладить пульсации выходного напряжения, поступающего с выхода блока выпрямления, это подключить накопительный конденсатор параллельно выходу и питать нагрузку от одного накопительного конденсатора (рис. 6.6).

Источник питания, в котором используется накопительный конденсатор

Рис. 6.6 Источник питания, в котором используется накопительный конденсатор

При условии отсутствия тока в нагрузке (при холостом ходе) конденсатор зарядится до напряжения, равного полному амплитудному значению переменного напряжения, имеющегося на выходных клеммах вторичной обмотки трансформатора, то есть значения (Vsec * √2)

Величина заряда на конденсаторе в течение каждого периода изменения напряжения будет пропорциональна выходному напряжению трансформатора, причем, в момент прохождения напряжения через максимальное значение заряд на конденсаторе достигает своего максимального значения. Напряжение на выходе трансформатора затем снижается достаточно быстро, а при достижении нулевого амплитудного значения выпрямительные диоды перестают проводить ток. Ток в нагрузке при этом обеспечивается за счет накопленного заряда в конденсаторе, который разряжается, при резистивной нагрузке напряжение на нем снижается по экспоненциальному закону до тех пор, пока напряжение на выходе трансформатора вновь не возрастет до значения, достаточного для заряда конденсатора. После этого цикл заряда-разряда конденсатора повторяется (рис. 6.7).

Напряжение пульсаций, возникающее на накопительном конденсаторе 
 в течение его цикла заряда-разряда

Рис. 6.7 Напряжение пульсаций, возникающее на накопительном конденсаторе в течение его цикла заряда-разряда

Хотя теоретически снижение напряжения на конденсаторе во время разряда происходит по экспоненциальному закону, с достаточной для практических целей точностью можно аппроксимировать экспоненту, по которой происходит уменьшение напряжения, прямой линией. В случае, когда в качестве нагрузки используется последовательно включенный стабилизатор, кривая снижения напряжения в действительности является прямой линией. Использование такого упрощения позволяет легко рассчитать величину напряжения остаточных пульсаций.

Заряд, накапливаемый на конденсаторе, определяется выражением:

Приравнивая правые части уравнений, можно написать:

Из этого выражения определяется величина напряжения на конденсаторе:

Общая величина заряда, выраженная через величину тока I, протекающего за время t, можно выразить следующим образом:

Данное уравнение показывает изменение напряжения на конденсаторе, которое вызывается током I, протекающим через конденсатор в течение времени t. Если частота переменного тока в сети питания равна 50 Гц, то время одного полупериода составит 0,01 с. Если принять еще одно допущение, что ток протекает по конденсатору в течение всего полупериода, то тогда в приведенной формуле время t = 0,01 с. После подстановки t получится очень полезное выражение для определения величины двойного амплитудного (то есть пик-пикового) значения напряжения пульсаций:

На первый взгляд может показаться, что это выражение будет малоприменимым, так как при его получении были использованы два очень существенных приближения, однако, с учетом того, что в качестве накопительных конденсаторов выпрямителя, как правило, используются электролитические конденсаторы, точность изготовления которых составляет + 20%, то требование высокой точности при выводе этого выражения (с учетом ошибки, вносимой разбросом параметров конденсатора и других элементов схемы), не представляется таким уж необходимым.

Используя данное выражение, можно рассчитать напряжение пульсаций на выходе схемы, приведенной на рис. 6.6 в качестве примера, когда емкость конденсатора составляет 68 пФ, а ток нагрузки равен 120 мА.

Полученное значение напряжения пульсаций составляет примерно 5% от полного значения напряжения питания, что можно оценивать как вполне неплохой результат для выбранной схемы.

Результаты расчета по вышеприведенной методике можно считать вполне разумными с практической точки зрения, при условии, что напряжения остаточных пульсаций обычно укладывается в пределы от 5 до 20% от значения общего напряжения (на практике, как правило, просто не допускаются напряжения пульсаций, превышающие указанные значения).

 

 

 

Информация

 

Продолжение

Переменное напряжение пульсаций равномерно колеблется относительно линии VDC и при положительной полуволне достигает амплитудного значения Vpeak, следовательно,

Накопительный конденсатор заряжается до амплитудного значения выходного напряжения выпрямителя, напряжение пульсаций вычитается из него и, таким образом, снижает выходное напряжение. Выходное напряжение Vout можно представить как бы состоящим из двух составляющих: составляющей напряжения постоянного тока, представленной как бы в идеальном виде, VDC, и наложенной на него переменной составляющей напряжения остаточных пульсаций, υripple. Удобство такого подхода проявляется в том, что последующий фильтр отсекает переменную составляющую тока пульсаций, оставляя только чисто постоянную составляющую.

Если обратиться к ранее рассмотренному примеру, для которого υripple = 18 В, а амплитудное значение напряжения Vpeak = 325 В, то напряжение постоянного тока, которое будет получено после идеальной последующей фильтрации переменной составляющей, составит:

В заключение следует отметить, что во всех случаях величина постоянного напряжения всегда будет уменьшаться на половину значения напряжения пульсаций.

Пульсирующая составляющая постоянного тока и угол проводимости

После рассмотрения проблем с напряжением остаточных пульсаций необходимо рассмотреть ток пульсирующей составляющей. Последний фактически составляет ток, необходимый для полного восстановления заряда на конденсаторе во время каждого полупериода. Чтобы определить величину этого тока, необходимо найти значение угла проводимости, который представляет время, в течение которого диоды остаются во включенном состоянии и одновременно заряжается конденсатор (рис. 6.8).

Для определения этой величины надо начать отсчет с момента времени, когда конденсатор полностью заряжен. Так как известно значения напряжения пульсаций, то можно определить абсолютное значение напряжения на конденсаторе в тот момент времени, когда диод проводит ток. Тогда напряжение на выходе выпрямителя (если для простоты изложения пренебречь полярностью напряжения) составляет:

 
 
Сайт создан в системе uCoz