Содержание

Общие сведения,
классификация
Устройство и работа диода
Устройство и работа триода
Электронная эмиссия
Термоэлектронные катоды
Особенности устройства
электронных ламп
Физические процессы
Закон степени трех вторых
Анодная характеристика
Параметры
Рабочий режим. Применение
диода для выпрямления
переменного тока
Основные типы
Физические процессы
Токораспределение
Действующее напряжение и
закон степени трех вторых
Характеристики
Параметры
Особенности
Усилительный каскад с
триодом
Параметры усилительного
каскада
Аналитический расчет и
эквивалентные схемы
усилительного каскада
Графоаналитический расчет
режима усиления
Генератор с триодом
Межэлектродные емкости
Каскады с общей сеткой и
общим анодом
Недостатки триодов
Основные типы приемно-
усилительных триодов
Устройство и работа тетрода
Устройство и работа пентода
Схемы включения тетродов
и пентодов
Характеристики тетродов
и пентодов
Параметры тетродов и
пентодов
Межэлектродные емкости
тетродов и пентодов
Устройство и работа
лучевого тетрода
Характеристики и параметры
лучевого тетрода
Рабочий режим тетродов
и пентодов
Пентоды переменной
крутизны
Краткие сведения о
различных типах
тетродов и пентодов
Специальные лампы
Общие сведения
Электростатические
электронно-лучевые трубки
Магнитные электронно-
лучевые трубки
Люминесцентный экран
Краткие сведения о
различных электронно-
лучевых трубках
Электрический разряд
в газах
Тлеющий разряд
Стабилитроны
Тиратроны тлеющего разряда
Индикаторные приборы
Дисплеи
Краткие сведения о
различных газоразрядных
приборах
Фотоэлектронная эмиссия
Электровакуумные
фотоэлементы
Фотоэлектронные умножители
Причины собственных шумов
Шумовые параметры
Межэлектродные емкости
и индуктивности выводов
Инерция электронов
Наведенные токи в
цепях электродов
Входное сопротивление
и потери энергии
Импульсный режим
Основные типы электронных
ламп для СВЧ
Общие сведения
Пролетный клистрон
Отражательный клистрон
Магнетрон
Лампы бегущей и
обратной волны
Амплитрон и карматрон
Надежность и испытание
электровакуумных приборов
Усилитель на триоде
с общим катодом
Ограничения по выбору
рабочей точки
Режим в рабочей точке
Катодное смещение
Выбор величины
сопротивления резистора
в цепи сетки
Выбор выходного
разделительного
конденсатора
Вредное влияние проходной
емкости лампы и пути
его уменьшения
Применение
экранированных ламп
Каскод (каскодная схема)
Катодный повторитель
Каскад с общим катодом
как приемник
неизменяющегося тока
Пентоды в качестве
приемников
неизменяющегося тока
Катодный повторитель
с активной нагрузкой
Катодный повторитель Уайта
μ-повторитель
Выбор верхней лампы для
μ -повторителя
Параллельно управляемый
двухламповый усилитель
(SRPP)
β-повторитель
Дифференциальная пара
(дифференциальный каскад)
Коэффициент реакции
питающего напряжения
(PSRR)
дифференциальной пары
Полупроводниковые
приемники неизменяющегося
тока для
дифференциальной пары
Использование транзисторов
в качестве активной нагрузки
для электронных ламп
Классификация искажений.
Принципы оценки линейных
искажений
Принципы измерения
нелинейных искажений
Измерение и интерпретация
искажений
Совершенствование
измерений нелинейных
гармонических искажений
Цифровая обработка сигналов
Особенности проектирования
усилителей с малыми
искажениями
Работа с сеточным током
и нелинейные искажения
Уменьшение искажений
подавлением (компенсацией)
Проблемы смещения
по постоянному току
Выбор электронной лампы по
критерию низких искажений
Проблема сопряжения одного
каскада со следующим
Усилитель класса А для
электромагнитных головных
телефонов с непосредств.
междукаскадной связью
Радиокомпоненты -
Общие сведения
Ряды стандартизованных
значений сопротивлений
Металлизированные
пленочные резисторы
Проволочные резисторы
Конденсаторы -
Общие сведения
Металлические конденсаторы
с воздушным диэлектриком
Пленочные конденсаторы,
изготовленные
металлизацией диэлектрика
Алюминиевые
электролитические
конденсаторы
Основные вопросы,
возникающие при
выборе конденсатора
Общие сведения о
катушках индуктивности
Трансформаторы -
Общие сведения
Трансформаторы.
Намагничивание и потери
Модели трансформаторов
Почему необходимо
использовать трансформаторы
Определение параметров
неизвестного трансформатора
Основные виды
источников питания
Выпрямление переменного
тока
Одиночный накопительный
конденсатор в роли
сглаживающего элемента
Влияние напряжения
пульсаций на выходное
напряжение
Насыщение сердечника
трансформатора
Критерии выбора силового
трансформатора
Источник питания со
сглаживающим дросселем
Номинальное значение
тока дросселя
Выбросы тока и
демпфирующие элементы
Использование накопительного
конденсатора для снижения
высоковольтного напряжения
Частотные характеристики
используемых на практике
LC-фильтров
Широкополосная фильтрация
Выпрямители с умножением
(умножители) напряжения
Классическая схема
последовательного
стабилизатора
Двухтранзисторная схема
последовательного
стабилизатора
Стабилизатор цепи сеточного
смещения с регулируемым
выходным напряжением
Источники питания низкого
напряжения и синфазный шум
Ламповый стабилизатор
напряжения
Способы увеличения
выходного тока стабилизатора
Коэффициент режекции
источника питания
Включение сглаживающих
конденсаторов
Перенапряжения при
включении схемы
Составление предварительной
схемы блока питания
Высоковольтный выпрямитель
и стабилизатор
Особенности смещения
подогревателей ламп
Схема улучшенного
источника питания
Рабочий режим
Увеличение максимально
допустимого Vrrm
Выходной каскад класса А
с несимметричным выходом
Особенности акустических
систем
Неидеальности
трансформаторов
Режимы работы усилительных
приборов. Классы усилителей
Двухтактный выходной каскад
Выходной каскад по
ультралинейной схеме
Трансформаторный катодный
повторитель
Усилители без выходного
трансформатора
Составляющие блока
усилителя мощности
Предоконечный каскад блока
усилителя мощности
Фазоинверсный каскад
Дифференциальный усилитель
или пара с катодной связью
«Согласованный»
фазоинвертор
Общие проблемы
устойчивости усилителей
Подавление первой
доминанты ВЧ составляющей
Низкочастотное
самовозбуждение усилителя
Усилитель Williamson
Усилитель Milliard 5-20
Усилитель Quad II
Выбор выходной лампы
Выбор статической рабочей
точки с учетом Pвых и КНИ
Точное определение
выходного трансформатора
Особенность выпрямление
высоковольтного напряжения
Варианты применения
стабилизатора ВВ напряжения
Требования к каскаду
предоконечного усиления
Определение рабочей точки
предоконечного каскада
Проверка работоспособности
усилителя
Пример разработки
двухтактного УМ
Оптимизация входного и
фазоинверсного каскадов
Расчет R катодного смещения
лампы и R обратной связи
Выбор элементов
оконечного каскада
Разработка усилителей
мощностью более 10 Вт
Активные кроссоверы
и схема Зобеля
Выбор лампы для
оконечного каскада
Требования к предоконечному
каскаду усиления
Источники питания и
постоянная токовая нагрузка
Второй дифференциальный
усилитель и выходной каскад
Первый дифференциальный
усилитель и линейность х-ки
Каскодная схема постоянной
токовой нагрузки
Постоянная токовая нагрузка
первого диф. каскада
Элементы, повышающие ВЧ
устойчивость. Итоговая схема
Схема источника питания
«Потомок от усилителя Beast»
Расчет уровня фонового
шума от ИП
Особенности цифрового
сигнала от компакт-диска
Требования к предусилителю
Технические требования
к линейному каскаду
Традиционный линейный
каскад
Пути достижения заданных
требований и выбор лампы
Основные проблемы
регулирования громкости
Переключаемые аттенюаторы
Расчет переключаемого
аттенюатора
Табличные вычисления для
расчета регулятора громкости
Светочувствительные
резисторы и громкость
Входной переключатель
Частотный корректор RIAA
Влияние провода
звукоснимателя
Требования к блоку
частотной коррекции
Метод частотной коррекции
стандарта RIAA
Раздельное выравнивание
характеристики RIAA
Шумы и влияние входной
емкости входного каскада
Учет собственных
шумов лампы
Улучшение шумовых
характеристик с RIAA
Расчет элементов на 75 мкс
Параметры цепей на
3180 мкс и 318 мкс
Симметричный вход и
подключение звукоснимателя
Симметричный предусилитель
Возможности исключения
линейного каскада
Вариант RIAA с исполь-
зованием лампы типа ЕС8010
Оптимизация характеристик
входного трансформатора
Анализ работы блока RIAA
Практические методы
настройки блока RIAA
Линейный каскад
О межблочных и
акустических кабелях

 

 
 

Инерция электронов

Вследствие того что электроны имеют массу, они не могут мгновенно пролетать расстояние между электродами. На СВЧ время пролета электронов в лампе, несмотря на свою малость (10-8 —10-10 с), соизмеримо с периодом колебаний. Лампа перестает быть малоинерционным прибором. Принято говорить, что на СВЧ проявляется инерция электронов. Инерция электронных процессов в лампе создает вредные фазовые сдвиги, искажает форму импульсов анодного тока и служит причиной возникновения значительных сеточных токов. В результате резко снижается входное сопротивление лампы, увеличиваются потери мощности, а следовательно, уменьшается полезная мощность.

Инерция электронов не влияет на работу лампы, на частотах, соответствующих диапазонам метровых и более длинных волн. Действительно, если период колебаний Т много больше, чем время пролета электронов в лампе tnp, то переменные напряжения на электродах лампы за это время не успевают значительно измениться. Это наглядно показывают графики на рис. 24.2, изображающие изменение напряжений на сетке и на аноде некоторой усилительной лампы, когда период колебаний в 40 раз больше времени пролета электрона. Например, если tnp = 10-9 с, то Т = 40·10-9 с, что соответствует f = 1/(40·10-9) = 25·106 Гц = 25 МГц или длине волны λ = 12 м.

В данном случае можно считать, что пролет электрона от катода к аноду совершается при постоянных напряжениях электродов. Это означает, что движение электронов происходит по обычным законам без каких-либо новых явлений и анодный ток изменяется соответственно изменениям сеточного напряжения. Переменная составляющая анодного тока будет совпадать по фазе с переменным напряжением сетки. Иначе протекают электронные процессы в тех случаях, когда время пролета одного порядка с периодом колебаний.

Режим работы лампы при постоянных напряжениях электродов называется статическим. Если же напряжение хотя бы одного из электродов меняется, но не с очень высокой частотой, то такой режим называется квазистатическим. И наконец, режим называется динамическим, если напряжение хотя бы одного электрода изменяется так быстро, что законы статического режима применять нельзя. На СВЧ лампы работают именно в динамическом режиме. Неприменимость законов статического режима к динамическому объясняется инерцией электронов.

Сравнение времени пролета электронов с периодом колебаний

Рис. 24.2. Сравнение времени пролета электронов с периодом колебаний

 

Вместо времени пролета часто пользуются углом пролета αпр, который связан с временем tпр соотношением

αпр = ω tпр, (24.3)

где ω — угловая частота переменного напряжения электродов лампы.

Очевидно, что αпр есть изменение фазового угла переменного напряжения за время tпр. Если, например, tпр = Т/4, то αпр = 90°. При углах пролета меньше 20° инерцию электронов обычно не учитывают, т. е. режим считают квазистатическим.

Рассмотрим особенности электронных процессов в триоде на СВЧ, имея в виду, что электрон большую часть времени пролета тратит на промежуток катод — сетка, так как здесь ускоряющая разность потенциалов невелика. Пусть, для примера, время пролета на этом участке равно половине периода, а рабочая точка установлена в самом начале анодно-сеточной характеристики лампы. На более низких частотах при этом был бы режим отсечки анодного тока, т. е. импульсы анодного тока проходили бы в течение положительных полупериодов переменного сеточного напряжения, а во время отрицательных полупериодов лампа была бы заперта.

Но если tпр = Т/2, то работа лампы существенно изменится. Электроны, начавшие свое движение от катода в начале положительного полупериода сеточного напряжения, пролетят сквозь сетку в конце этого полупериода. Последующие электроны, начавшие движение позже, не успеют долететь до сетки во время положительного полупериода. Они еще будут в пути, когда на сетке переменное напряжение уже изменит свой знак и поле между сеткой и катодом станет тормозящим. Многие электроны будут заторможены, остановятся, не долетев до сетки, и вернутся на катод. Это особенно относится к электронам, начавшим движение от катода в конце положительного полупериода, так как они почти сразу попадают в тормозящее поле. Возвращение части электронов обратно на катод уменьшает амплитуду импульсов анодного тока. Уменьшается полезная мощность, отдаваемая лампой, и начинается бомбардировка катода возвращающимися электронами. Из-за этого происходит дополнительный нагрев катода. Мощность на нагрев расходуется источником переменного сеточного напряжения. Что же касается электронов, успевших пролететь сквозь сетку, то, когда они движутся далее к аноду, напряжение сетки становится уже отрицательным, а значит, увеличивается разность потенциалов между анодом и сеткой и электроны с увеличенной энергией бомбардируют анод. Дополнительная мощность на эту бомбардировку также отбирается от источника усиливаемого напряжения.

Если рассмотреть электронные процессы в других режимах, то можно прийти к таким же выводам: вследствие инерции электронов уменьшается переменная составляющая анодного тока, увеличивается мощность потерь на аноде и дополнительно нагревается катод от ударов возвращающихся электронов. Эти явления наблюдаются не только при tпр = Т/2, но и всегда, когда время пролета и период колебаний соизмеримы.

 

 

 

Информация

 

Продолжение

Для более правильного понимания работы электронных ламп на СВЧ необходимо познакомиться с наведенными токами в цепях электродов этих ламп.

При рассмотрении работы ламп обычно для упрощения считают, что ток в цепи какого-либо электрода возникает благодаря попаданию на этот электрод потока электронов, летящих внутри лампы. Такой поток электронов внутри лампы называют конвекционным током. Более глубокое изучение работы электронных ламп показало, что ток во внешней цепи любого электрода представляет собой наведенный (индуцированный) ток, сущность которого легко уяснить, если вспомнить явление электро-статической индукции.

Пусть имеется незаряженный проводник А (рис. 24.3), к одному концу которого приближается отрицательно заряженный конец проводника Б. Тогда некоторое число электронов проводника А, отталкиваемых зарядом проводника Б, уйдет на другой конец проводника А и там возникнет отрицательный заряд. На ближнем к индуцирующему заряду конце проводника А будет недостаток электронов, т.е. появится положительный заряд. При этом вдоль проводника А пройдет ток, который и будет наведенным током. Его значение тем больше, чем больше индуцирующий заряд и чем быстрее он приближается к проводнику А. Если удалять проводник Б от проводника А, то электроны будут возвращаться, и, следовательно, в проводнике А пройдет ток обратного направления, значение которого по-прежнему будет определяться скоростью движения проводника Б и индуцирующим зарядом.

 
 
Сайт создан в системе uCoz