Содержание

Общие сведения,
классификация
Устройство и работа диода
Устройство и работа триода
Электронная эмиссия
Термоэлектронные катоды
Особенности устройства
электронных ламп
Физические процессы
Закон степени трех вторых
Анодная характеристика
Параметры
Рабочий режим. Применение
диода для выпрямления
переменного тока
Основные типы
Физические процессы
Токораспределение
Действующее напряжение и
закон степени трех вторых
Характеристики
Параметры
Особенности
Усилительный каскад с
триодом
Параметры усилительного
каскада
Аналитический расчет и
эквивалентные схемы
усилительного каскада
Графоаналитический расчет
режима усиления
Генератор с триодом
Межэлектродные емкости
Каскады с общей сеткой и
общим анодом
Недостатки триодов
Основные типы приемно-
усилительных триодов
Устройство и работа тетрода
Устройство и работа пентода
Схемы включения тетродов
и пентодов
Характеристики тетродов
и пентодов
Параметры тетродов и
пентодов
Межэлектродные емкости
тетродов и пентодов
Устройство и работа
лучевого тетрода
Характеристики и параметры
лучевого тетрода
Рабочий режим тетродов
и пентодов
Пентоды переменной
крутизны
Краткие сведения о
различных типах
тетродов и пентодов
Специальные лампы
Общие сведения
Электростатические
электронно-лучевые трубки
Магнитные электронно-
лучевые трубки
Люминесцентный экран
Краткие сведения о
различных электронно-
лучевых трубках
Электрический разряд
в газах
Тлеющий разряд
Стабилитроны
Тиратроны тлеющего разряда
Индикаторные приборы
Дисплеи
Краткие сведения о
различных газоразрядных
приборах
Фотоэлектронная эмиссия
Электровакуумные
фотоэлементы
Фотоэлектронные умножители
Причины собственных шумов
Шумовые параметры
Межэлектродные емкости
и индуктивности выводов
Инерция электронов
Наведенные токи в
цепях электродов
Входное сопротивление
и потери энергии
Импульсный режим
Основные типы электронных
ламп для СВЧ
Общие сведения
Пролетный клистрон
Отражательный клистрон
Магнетрон
Лампы бегущей и
обратной волны
Амплитрон и карматрон
Надежность и испытание
электровакуумных приборов
Усилитель на триоде
с общим катодом
Ограничения по выбору
рабочей точки
Режим в рабочей точке
Катодное смещение
Выбор величины
сопротивления резистора
в цепи сетки
Выбор выходного
разделительного
конденсатора
Вредное влияние проходной
емкости лампы и пути
его уменьшения
Применение
экранированных ламп
Каскод (каскодная схема)
Катодный повторитель
Каскад с общим катодом
как приемник
неизменяющегося тока
Пентоды в качестве
приемников
неизменяющегося тока
Катодный повторитель
с активной нагрузкой
Катодный повторитель Уайта
μ-повторитель
Выбор верхней лампы для
μ -повторителя
Параллельно управляемый
двухламповый усилитель
(SRPP)
β-повторитель
Дифференциальная пара
(дифференциальный каскад)
Коэффициент реакции
питающего напряжения
(PSRR)
дифференциальной пары
Полупроводниковые
приемники неизменяющегося
тока для
дифференциальной пары
Использование транзисторов
в качестве активной нагрузки
для электронных ламп
Классификация искажений.
Принципы оценки линейных
искажений
Принципы измерения
нелинейных искажений
Измерение и интерпретация
искажений
Совершенствование
измерений нелинейных
гармонических искажений
Цифровая обработка сигналов
Особенности проектирования
усилителей с малыми
искажениями
Работа с сеточным током
и нелинейные искажения
Уменьшение искажений
подавлением (компенсацией)
Проблемы смещения
по постоянному току
Выбор электронной лампы по
критерию низких искажений
Проблема сопряжения одного
каскада со следующим
Усилитель класса А для
электромагнитных головных
телефонов с непосредств.
междукаскадной связью
Радиокомпоненты -
Общие сведения
Ряды стандартизованных
значений сопротивлений
Металлизированные
пленочные резисторы
Проволочные резисторы
Конденсаторы -
Общие сведения
Металлические конденсаторы
с воздушным диэлектриком
Пленочные конденсаторы,
изготовленные
металлизацией диэлектрика
Алюминиевые
электролитические
конденсаторы
Основные вопросы,
возникающие при
выборе конденсатора
Общие сведения о
катушках индуктивности
Трансформаторы -
Общие сведения
Трансформаторы.
Намагничивание и потери
Модели трансформаторов
Почему необходимо
использовать трансформаторы
Определение параметров
неизвестного трансформатора
Основные виды
источников питания
Выпрямление переменного
тока
Одиночный накопительный
конденсатор в роли
сглаживающего элемента
Влияние напряжения
пульсаций на выходное
напряжение
Насыщение сердечника
трансформатора
Критерии выбора силового
трансформатора
Источник питания со
сглаживающим дросселем
Номинальное значение
тока дросселя
Выбросы тока и
демпфирующие элементы
Использование накопительного
конденсатора для снижения
высоковольтного напряжения
Частотные характеристики
используемых на практике
LC-фильтров
Широкополосная фильтрация
Выпрямители с умножением
(умножители) напряжения
Классическая схема
последовательного
стабилизатора
Двухтранзисторная схема
последовательного
стабилизатора
Стабилизатор цепи сеточного
смещения с регулируемым
выходным напряжением
Источники питания низкого
напряжения и синфазный шум
Ламповый стабилизатор
напряжения
Способы увеличения
выходного тока стабилизатора
Коэффициент режекции
источника питания
Включение сглаживающих
конденсаторов
Перенапряжения при
включении схемы
Составление предварительной
схемы блока питания
Высоковольтный выпрямитель
и стабилизатор
Особенности смещения
подогревателей ламп
Схема улучшенного
источника питания
Рабочий режим
Увеличение максимально
допустимого Vrrm
Выходной каскад класса А
с несимметричным выходом
Особенности акустических
систем
Неидеальности
трансформаторов
Режимы работы усилительных
приборов. Классы усилителей
Двухтактный выходной каскад
Выходной каскад по
ультралинейной схеме
Трансформаторный катодный
повторитель
Усилители без выходного
трансформатора
Составляющие блока
усилителя мощности
Предоконечный каскад блока
усилителя мощности
Фазоинверсный каскад
Дифференциальный усилитель
или пара с катодной связью
«Согласованный»
фазоинвертор
Общие проблемы
устойчивости усилителей
Подавление первой
доминанты ВЧ составляющей
Низкочастотное
самовозбуждение усилителя
Усилитель Williamson
Усилитель Milliard 5-20
Усилитель Quad II
Выбор выходной лампы
Выбор статической рабочей
точки с учетом Pвых и КНИ
Точное определение
выходного трансформатора
Особенность выпрямление
высоковольтного напряжения
Варианты применения
стабилизатора ВВ напряжения
Требования к каскаду
предоконечного усиления
Определение рабочей точки
предоконечного каскада
Проверка работоспособности
усилителя
Пример разработки
двухтактного УМ
Оптимизация входного и
фазоинверсного каскадов
Расчет R катодного смещения
лампы и R обратной связи
Выбор элементов
оконечного каскада
Разработка усилителей
мощностью более 10 Вт
Активные кроссоверы
и схема Зобеля
Выбор лампы для
оконечного каскада
Требования к предоконечному
каскаду усиления
Источники питания и
постоянная токовая нагрузка
Второй дифференциальный
усилитель и выходной каскад
Первый дифференциальный
усилитель и линейность х-ки
Каскодная схема постоянной
токовой нагрузки
Постоянная токовая нагрузка
первого диф. каскада
Элементы, повышающие ВЧ
устойчивость. Итоговая схема
Схема источника питания
«Потомок от усилителя Beast»
Расчет уровня фонового
шума от ИП
Особенности цифрового
сигнала от компакт-диска
Требования к предусилителю
Технические требования
к линейному каскаду
Традиционный линейный
каскад
Пути достижения заданных
требований и выбор лампы
Основные проблемы
регулирования громкости
Переключаемые аттенюаторы
Расчет переключаемого
аттенюатора
Табличные вычисления для
расчета регулятора громкости
Светочувствительные
резисторы и громкость
Входной переключатель
Частотный корректор RIAA
Влияние провода
звукоснимателя
Требования к блоку
частотной коррекции
Метод частотной коррекции
стандарта RIAA
Раздельное выравнивание
характеристики RIAA
Шумы и влияние входной
емкости входного каскада
Учет собственных
шумов лампы
Улучшение шумовых
характеристик с RIAA
Расчет элементов на 75 мкс
Параметры цепей на
3180 мкс и 318 мкс
Симметричный вход и
подключение звукоснимателя
Симметричный предусилитель
Возможности исключения
линейного каскада
Вариант RIAA с исполь-
зованием лампы типа ЕС8010
Оптимизация характеристик
входного трансформатора
Анализ работы блока RIAA
Практические методы
настройки блока RIAA
Линейный каскад
О межблочных и
акустических кабелях

Бобруйский краеведческий музей одна из достопримечательностей города.

 

 
 

Измерение и интерпретация искажений

В идеальном случае, все и всегда могли бы выполнять измерения нелинейных искажений одинаковым образом, используя одинаковую аппаратуру, и идентично интерпретировать результаты. Все результаты были бы сопоставимы, позволяя утверждать, что, например, устройство «А» лучшее, чем устройство «В» о критерию нелинейных искажений.

Практически существует много различных методов измерений. Например, измерение уровней комбинационных (интермодуляционных) составляющих требует подачи на вход испытуемого устройства двух (или больше) гармонических колебаний на различных частотах (см. предыдущий параграф). Какие частоты должны быть выбраны, и каковы должны быть их относительные амплитуды? На практике существуют, по крайней мере, три разновидности этого измерения. Точно так же, какая частота гармонического колебания должна быть использована для измерения нелинейных искажений методом определения уровней высших гармоник? Должны ли производиться измерения более чем на одной частоте? Какие результаты измерений нужно учитывать, а какие исключить? Ответы на эти вопросы пытаются дать стандарты на различную аппаратуру и методы измерений, что позволяет сравнивать результаты.

При разработке оборудования, чаще всего заранее известно, где вероятнее всего будут возникать проблемы, поэтому планируются испытания для их исключения. Это позволяет измерить ошибки, внести изменения в разработку, и в дальнейшем увидеть, привело ли это к улучшению результатов.

Предыдущий параграф показывает суть проблем измерений нелинейных искажений, а теперь самое время заострить внимание на некоторых более тонких моментах:

• необходимо знать ограничения поверочной аппаратуры. Нет никакого смысла в попытке измерить искажение усилителя, если их уровень меньше собственных искажений, создаваемых измерительным оборудованием;

• всегда нужно четко представлять уместность тех или иных измерений. Например, измерение коэффициента детонации в аналоговом магнитофоне или проигрывателе виниловых грампластинок полезно, потому что это измерение выявляет известные погрешности в механической части такого оборудования. Измерение же коэффициент детонации на плеерах компакт-дисков бессмысленно, потому что они, вследствие цифрового способа записи данных, не страдают от этой проблемы;

• проектировщик, стремящийся улучшить показатели разрабатываемого оборудования, всегда проводит критические испытания. Маркетинговый же отдел наоборот, проводит испытания, которые устройство пройдет заведомо хорошо;

• при проведении измерений всегда предполагается, что проектировщик как никто другой разбирается в разработанном им оборудовании и лучше всех может решить, какие испытания должны быть сделаны в обязательном порядке;

• в большинстве случаев измерения проводят сами проектировщики. По этим причинам, измерения указанные другими изготовителями или сертификационными центрами далеко не всегда обязательны — это одна из причин субъективного взгляда. Другая причина отклонения от требований стандартов на измерения тех или иных показателей в любительских условиях — хорошее испытательное оборудование слишком дорого. Однако тщательно выбранные измерения на недорогом испытательном оборудовании и их тщательная интерпретация могут быть очень полезны, при проектировании и создании в частности ламповых усилителей, являющихся основным объектом внимания.

Выбор измерений.

В отличие от ламповых, транзисторные усилители обычно имеют много глубоких отрицательных обратных связей, чтобы уменьшать искажения. Так как применение обратной связи может легко превратить усилитель в генератор, усилитель, перед применением обратной связи, преднамеренно делают с неравномерной амплитудно-частотной характеристикой, которая имеет завал в области верхних частот. Поскольку отрицательная обратная связь уменьшает линейные и нелинейные искажения, то частотная характеристика выпрямляется, и нелинейные искажения уменьшаются. Так как частотная характеристика усилителя падала с частотой перед применением обратной связи, то на высоких частотах возможна меньшая отрицательная обратная связь, чтобы скорректировать нелинейные искажения. Это означает, что усилители с глубокой обратной связью должны иметь неравномерный по частоте суммарный коэффициент гармоник (СКГ), который повышается с частотой, вследствие чего, измерение СКГ на одной отдельно взятой частоте является неуместным, и требуется проведение нескольких измерений на разных частотах.

Если же испытывается усилитель, не охваченный глубокой отрицательной обратной связью (например, ламповый усилитель), то измерение СКГ на одной частоте вполне может оказаться приемлемым.

Электронная лампа является нелинейным элементам и вносит нелинейные искажения, поскольку ее проходная характеристика нелинейна. Эту нелинейность можно считать одинаковой на всех звуковых частотах, поскольку у подавляющего большинства электронных ламп частотная зависимость их характеристик наступает лишь в области достаточно высоких радиочастот. Исходя из этого свойства ламп, для оценки нелинейных искажений усилителя методом измерения уровня высших гармоник при испытании гармоническим колебанием, в первом приближении достаточно одного измерения на произвольной частоте испытательного гармонического колебания, не забывая, конечно, о том, чтобы по крайней мере третья гармоника этого колебания укладывалась в пределы верхней частоты воспроизводимого усилителем диапазона. Казалось бы удобно выбрать для испытаний, например совсем невысокую частоту 50 Гц или 60 Гц, исходя из удобства измерений, поскольку на эти «промышленные» частоты имеются цифровые вольтметры с точностью измерений 0,1 дБ. Однако, на этих частотах в исследуемый усилитель поступает множество помех через питающую электросеть, что вызовет ложные показания измерительных приборов. Также возможны биения между частотой питающей сети и частотой измерительного генератора. Следовательно, необходимо увеличивать поверочную частоту для того, чтобы устранить помехи от частоты сети электроснабжения и ее гармоник.

Как уже говорилось выше, не следует использовать и высокие частоты, иначе высшие гармоники, уровень которых как раз и характеризует искомые нелинейные искажения, попадут на область спада амплитудно-частотной характеристики усилителя, что даст заведомо ложный излишне хороший результат измерения.

Некоторым общепринятым компромиссом между этими двумя противоречиями является частота 1 кГц. В единицах октав 1 кГц находится в середине диапазона звуковых частот. Эта частота отнесена достаточно далеко от помехи промышленной частоты переменного тока, и в то же время, ее высшие гармоники укладываются в диапазон частот, воспроизводимый большинством усилителей звуковой частоты, что позволяет избежать ошибок в измерениях.

 

 

 

Информация

 

Продолжение

На заре развития техники ламповых усилителей, классические измерения нелинейных гармонических искажений проводились путем подачи на вход гармонического колебания на частоте 1 кГц, подавления основного тона 1 кГц на выходе усилителя, и измерения амплитуду оставшегося, так называемого «остаточного» сигнала (то есть высших гармоник). Для ламповых усилителей того времени эти измерения были вполне достаточными. Позднее, особенно по мере внедрения транзисторных усилителей, эти измерения справедливо критиковались, так как они не учитывают весовой вклад отдельных гармоник в общую картину нелинейного продукта, их субъективное воздействие и ряд других факторов.

Весовая оценка гармоник

В различное время выдвигались разные предложения для весовой оценки уровней отдельных гармоник, чтобы корректно суммировать мощности гармоник и дать единую картину измерения субъективных искажений. Такая оценка учитывает тот факт, что человеческое ухо по разному реагирует на разные гармоники, возникающие в следствие нелинейных искажений усиливаемого сигнала.

В 1950 году Шортер (Shorter) предложил, чтобы весовая оценка уровня гармоник производилась путем их домножения на коэффициент n2/4 (где «n» равно номеру гармоники), то есть в относительных единицах:

Таким образом, вместо того, чтобы измерять амплитуды отдельных гармоник и вычислять СКГ, можно применить простейший измеритель нелинейных искажений, по критерию повышения уровня отклика на 12 дБ/октава. Чтобы эти измерения были сопоставимы с измерениями, выполненными стандартным измерительным прибором, измеряющим вторую гармонику при подаче на вход гармонического колебания с частотой 1 кГц, будет необходим фильтр с коэффициентом передачи 0 дБ на 2 кГц. Отметим, что указанные требования к полосе пропускания фильтра и его коэффициенту передачи критичны, и означают, что весовые измерения искажений являются верными только для обозначенной основной частоты 1 кГц.

 
 
Сайт создан в системе uCoz