Содержание

Общие сведения,
классификация
Устройство и работа диода
Устройство и работа триода
Электронная эмиссия
Термоэлектронные катоды
Особенности устройства
электронных ламп
Физические процессы
Закон степени трех вторых
Анодная характеристика
Параметры
Рабочий режим. Применение
диода для выпрямления
переменного тока
Основные типы
Физические процессы
Токораспределение
Действующее напряжение и
закон степени трех вторых
Характеристики
Параметры
Особенности
Усилительный каскад с
триодом
Параметры усилительного
каскада
Аналитический расчет и
эквивалентные схемы
усилительного каскада
Графоаналитический расчет
режима усиления
Генератор с триодом
Межэлектродные емкости
Каскады с общей сеткой и
общим анодом
Недостатки триодов
Основные типы приемно-
усилительных триодов
Устройство и работа тетрода
Устройство и работа пентода
Схемы включения тетродов
и пентодов
Характеристики тетродов
и пентодов
Параметры тетродов и
пентодов
Межэлектродные емкости
тетродов и пентодов
Устройство и работа
лучевого тетрода
Характеристики и параметры
лучевого тетрода
Рабочий режим тетродов
и пентодов
Пентоды переменной
крутизны
Краткие сведения о
различных типах
тетродов и пентодов
Специальные лампы
Общие сведения
Электростатические
электронно-лучевые трубки
Магнитные электронно-
лучевые трубки
Люминесцентный экран
Краткие сведения о
различных электронно-
лучевых трубках
Электрический разряд
в газах
Тлеющий разряд
Стабилитроны
Тиратроны тлеющего разряда
Индикаторные приборы
Дисплеи
Краткие сведения о
различных газоразрядных
приборах
Фотоэлектронная эмиссия
Электровакуумные
фотоэлементы
Фотоэлектронные умножители
Причины собственных шумов
Шумовые параметры
Межэлектродные емкости
и индуктивности выводов
Инерция электронов
Наведенные токи в
цепях электродов
Входное сопротивление
и потери энергии
Импульсный режим
Основные типы электронных
ламп для СВЧ
Общие сведения
Пролетный клистрон
Отражательный клистрон
Магнетрон
Лампы бегущей и
обратной волны
Амплитрон и карматрон
Надежность и испытание
электровакуумных приборов
Усилитель на триоде
с общим катодом
Ограничения по выбору
рабочей точки
Режим в рабочей точке
Катодное смещение
Выбор величины
сопротивления резистора
в цепи сетки
Выбор выходного
разделительного
конденсатора
Вредное влияние проходной
емкости лампы и пути
его уменьшения
Применение
экранированных ламп
Каскод (каскодная схема)
Катодный повторитель
Каскад с общим катодом
как приемник
неизменяющегося тока
Пентоды в качестве
приемников
неизменяющегося тока
Катодный повторитель
с активной нагрузкой
Катодный повторитель Уайта
μ-повторитель
Выбор верхней лампы для
μ -повторителя
Параллельно управляемый
двухламповый усилитель
(SRPP)
β-повторитель
Дифференциальная пара
(дифференциальный каскад)
Коэффициент реакции
питающего напряжения
(PSRR)
дифференциальной пары
Полупроводниковые
приемники неизменяющегося
тока для
дифференциальной пары
Использование транзисторов
в качестве активной нагрузки
для электронных ламп
Классификация искажений.
Принципы оценки линейных
искажений
Принципы измерения
нелинейных искажений
Измерение и интерпретация
искажений
Совершенствование
измерений нелинейных
гармонических искажений
Цифровая обработка сигналов
Особенности проектирования
усилителей с малыми
искажениями
Работа с сеточным током
и нелинейные искажения
Уменьшение искажений
подавлением (компенсацией)
Проблемы смещения
по постоянному току
Выбор электронной лампы по
критерию низких искажений
Проблема сопряжения одного
каскада со следующим
Усилитель класса А для
электромагнитных головных
телефонов с непосредств.
междукаскадной связью
Радиокомпоненты -
Общие сведения
Ряды стандартизованных
значений сопротивлений
Металлизированные
пленочные резисторы
Проволочные резисторы
Конденсаторы -
Общие сведения
Металлические конденсаторы
с воздушным диэлектриком
Пленочные конденсаторы,
изготовленные
металлизацией диэлектрика
Алюминиевые
электролитические
конденсаторы
Основные вопросы,
возникающие при
выборе конденсатора
Общие сведения о
катушках индуктивности
Трансформаторы -
Общие сведения
Трансформаторы.
Намагничивание и потери
Модели трансформаторов
Почему необходимо
использовать трансформаторы
Определение параметров
неизвестного трансформатора
Основные виды
источников питания
Выпрямление переменного
тока
Одиночный накопительный
конденсатор в роли
сглаживающего элемента
Влияние напряжения
пульсаций на выходное
напряжение
Насыщение сердечника
трансформатора
Критерии выбора силового
трансформатора
Источник питания со
сглаживающим дросселем
Номинальное значение
тока дросселя
Выбросы тока и
демпфирующие элементы
Использование накопительного
конденсатора для снижения
высоковольтного напряжения
Частотные характеристики
используемых на практике
LC-фильтров
Широкополосная фильтрация
Выпрямители с умножением
(умножители) напряжения
Классическая схема
последовательного
стабилизатора
Двухтранзисторная схема
последовательного
стабилизатора
Стабилизатор цепи сеточного
смещения с регулируемым
выходным напряжением
Источники питания низкого
напряжения и синфазный шум
Ламповый стабилизатор
напряжения
Способы увеличения
выходного тока стабилизатора
Коэффициент режекции
источника питания
Включение сглаживающих
конденсаторов
Перенапряжения при
включении схемы
Составление предварительной
схемы блока питания
Высоковольтный выпрямитель
и стабилизатор
Особенности смещения
подогревателей ламп
Схема улучшенного
источника питания
Рабочий режим
Увеличение максимально
допустимого Vrrm
Выходной каскад класса А
с несимметричным выходом
Особенности акустических
систем
Неидеальности
трансформаторов
Режимы работы усилительных
приборов. Классы усилителей
Двухтактный выходной каскад
Выходной каскад по
ультралинейной схеме
Трансформаторный катодный
повторитель
Усилители без выходного
трансформатора
Составляющие блока
усилителя мощности
Предоконечный каскад блока
усилителя мощности
Фазоинверсный каскад
Дифференциальный усилитель
или пара с катодной связью
«Согласованный»
фазоинвертор
Общие проблемы
устойчивости усилителей
Подавление первой
доминанты ВЧ составляющей
Низкочастотное
самовозбуждение усилителя
Усилитель Williamson
Усилитель Milliard 5-20
Усилитель Quad II
Выбор выходной лампы
Выбор статической рабочей
точки с учетом Pвых и КНИ
Точное определение
выходного трансформатора
Особенность выпрямление
высоковольтного напряжения
Варианты применения
стабилизатора ВВ напряжения
Требования к каскаду
предоконечного усиления
Определение рабочей точки
предоконечного каскада
Проверка работоспособности
усилителя
Пример разработки
двухтактного УМ
Оптимизация входного и
фазоинверсного каскадов
Расчет R катодного смещения
лампы и R обратной связи
Выбор элементов
оконечного каскада
Разработка усилителей
мощностью более 10 Вт
Активные кроссоверы
и схема Зобеля
Выбор лампы для
оконечного каскада
Требования к предоконечному
каскаду усиления
Источники питания и
постоянная токовая нагрузка
Второй дифференциальный
усилитель и выходной каскад
Первый дифференциальный
усилитель и линейность х-ки
Каскодная схема постоянной
токовой нагрузки
Постоянная токовая нагрузка
первого диф. каскада
Элементы, повышающие ВЧ
устойчивость. Итоговая схема
Схема источника питания
«Потомок от усилителя Beast»
Расчет уровня фонового
шума от ИП
Особенности цифрового
сигнала от компакт-диска
Требования к предусилителю
Технические требования
к линейному каскаду
Традиционный линейный
каскад
Пути достижения заданных
требований и выбор лампы
Основные проблемы
регулирования громкости
Переключаемые аттенюаторы
Расчет переключаемого
аттенюатора
Табличные вычисления для
расчета регулятора громкости
Светочувствительные
резисторы и громкость
Входной переключатель
Частотный корректор RIAA
Влияние провода
звукоснимателя
Требования к блоку
частотной коррекции
Метод частотной коррекции
стандарта RIAA
Раздельное выравнивание
характеристики RIAA
Шумы и влияние входной
емкости входного каскада
Учет собственных
шумов лампы
Улучшение шумовых
характеристик с RIAA
Расчет элементов на 75 мкс
Параметры цепей на
3180 мкс и 318 мкс
Симметричный вход и
подключение звукоснимателя
Симметричный предусилитель
Возможности исключения
линейного каскада
Вариант RIAA с исполь-
зованием лампы типа ЕС8010
Оптимизация характеристик
входного трансформатора
Анализ работы блока RIAA
Практические методы
настройки блока RIAA
Линейный каскад
О межблочных и
акустических кабелях

 

 
 

Особенность выпрямления высоковольтного напряжения

В замечательных паспортных характеристиках лампы типа 6528 обязательно должна быть своя «ахиллесова пята». Для предотвращения разрушения поверхностного слоя катода производители специально оговорили в документации, что катоду требуется предварительное время прогрева в течение 30 с, перед тем как может быть подано высокое напряжение. Такие требования встречаются довольно часто при использовании более-менее мощных ламп. Для такого положения дел могло бы оказаться превосходным использование лампового выпрямителя. В рассматриваемой схеме необходим ток силой 120 мА (с небольшим запасом для предусилительного каскада, возможно, около 10 мА) и высоковольтное напряжение, не превышающее 300 В, поэтому наиболее подходящим для выпрямителя кажется использование лампы-кенотрона EZ81.

Однако на практике обычные ламповые выпрямители начинают пропускать ток спустя примерно 10 с после подачи напряжения, следовательно, необходима дополнительная задержка, которая может быть обеспечена тепловым реле задержки. Тепловое реле задержки похоже на обычную лампу и состоит из подогревателя и биметаллической пластины, размещенных в стеклянном вакуумном баллоне. Биметаллическая пластина состоит из двух скрепленных вместе полосок разнородных металлов, имеющих различные коэффициенты температурного расширения. При нагревании полосы начинают изгибаться, на подвижном конце пластины имеется контакт, замыкающий электрическую цепь. В вакуумированной колбе потери на образование электрической дуги при замыкании-размыкании контактов отсутствуют, поэтому потери на работу такого реле определяются, в основном, удельной теплоемкостью материалов биметаллической пластины и ее массой. Время задержки срабатывания теплового реле может быть увеличено почти до трехкратного значения, указанного в паспорте, снижением напряжения подогревателя биметаллической пластины.

Если контакты реле задержки включены в цепь источника питания подогревателя лампового выпрямительного кенотрона, то время задержки теплового реле прибавляется ко времени задержки начала работы самого кенотрона и высоковольтное напряжение начнет постепенно повышаться спустя примерно 5 с после истечения времени задержки, которое необходимо для нормальной работы выходной лампы. В других вариантах используется способность многих реле задержки переключать сетевое напряжение питания или высоковольтное напряжение, но для таких реле должна существовать незначительная разница между напряжением подогревателя биметаллической пластины и напряжением на подвижном контакте переключателя. К сожалению, автор не смог найти паспортные данные для теплового реле типа 6N045T, обнаруженного в своих старых запасах, однако по маркировке он установил, что напряжение подогревателя реле составляет 6,3 В, а реле способно обеспечить задержку в 45 с. Реле имело стеклянный корпус, выполненный на основе колбы для лампы с пуговичными выводами В9А, что позволяло без труда визуально определить назначение контактных выводов и затем произвести тестирование на основе сделанных ранее умозаключений. При напряжении питания 6,3 В подогреватель потреблял ток 300 мА, а контакты замыкались через 41 с.

При включении сетевого питания с силового трансформатора на ламповый выпрямитель одновременно подается как высоковольтное напряжение так и напряжение питания подогревателя, но так как подогреватель катода еще холодный, то катод подвергается вредному воздействию сильного поля, создаваемого анодным напряжением, что уменьшает его срок службы. Хотя размещение реле задержки в цепи подогревателя выпрямительной лампы обеспечивает ситуацию, при которой высоковольтное напряжение в цепях звукового канала медленно возрастает с нулевого значения, но это также означает, что всякий раз при включении усилителя выпрямительная лампа испытывает аналогичное вредное воздействие в течение дополнительных 45 с, что сокращает срок ее службы. Это является инженерным компромиссом: кенотрон типа EZ81 является менее дорогим жертвоприношением, чтобы обеспечить больший срок службы более дорогой лампы выходного каскада.

Высоковольтный силовой трансформатор

Чтобы обеспечить подачу высоковольтного напряжения 300 В в начало обмотки выходного трансформатора, был выбран ламповый выпрямитель, дополненный сглаживающим фильтром, содержащим дроссель. Следовательно, необходимо знать падение напряжение на резистивной составляющей сопротивления дросселя RDC В запасниках автора (а это большая часть целой комнаты) удалось обнаружить пару дросселей Pameko, имеющих индуктивность 15 Гн и рассчитанных на токи до 250 мА, значение сопротивления RDC которых составляло 136 Ом. Следовательно, падение напряжения на каждом дросселе при прохождении тока 130 мА составило бы 17 В. Это значение напряжения должно быть прибавлено к необходимому напряжению 300 В, что в сумме составит 317 В.

Вместо того, чтобы заниматься расчетами «с нуля», для определения необходимого значения напряжения на трансформаторе можно воспользоваться характеристиками изменения напряжения стабилизации на дросселе, приводимыми производителями выпрямителей. Интерполяция зависимостей, приводимых для выпрямителя Milliard на кенотроне EZ81, дает примерную величину среднеквадратического значения напряжения 375 В, которое соответствует требуемому значению постоянного напряжения 317 В.

Тщательный поиск в запасниках позволил обнаружить большой трансформатор с U-образным сердечником, имеющий пару обмоток на напряжения 375 В с выводом от средней точки и рассчитанных на токи 250 мА, а также многочисленные накальные обмотки на напряжения 6,3 В. Находка показалась идеальной, позволяющей осуществить сдвоенный вариант конструкции.

Применимость высоковольтного дросселя и проблемы сглаживания пульсаций

Так как номинальный ток дросселя составляет 250 мА, то он легко поддержит рассчитанное значение тока. Минимально необходимое значение тока составляет:

В итоге, всегда необходимо иметь достоверную информацию, оказался ли выбор имеющегося в наличии высоковольтного дросселя (например, как в данном примере с индуктивностью 15 Гн и рассчитанного на ток до 250 мА) оправданным и удовлетворяющим всем требованиям. Используя соотношения и считая, что используется напряжение промышленной частоты 50 Гц, можно рассчитать, величины протекающих через дроссель переменных составляющих тока:

Так как выходной каскад потребляет ток 120 мА, то это значение гораздо выше рассчитанного нижнего предельного значения.

Зная емкость сглаживающего конденсатора, можно оценить величину фона переменного тока, создаваемого высоковольтным выпрямителем. Автор проверил несколько полипропиленовых конденсаторов с емкостью 120 мкФ и рабочим напряжением 400 В из имеющихся в наличии. Расчет уровня фон дал следующее:

где величина индуктивности приведен в генри, а величина емкости — в микрофарадах.

Анодная нагрузка и эквивалентное сопротивление лампы rа образуют делитель напряжения, следовательно, напряжение пульсации на аноде составит:

Выходной трансформатор реагирует на переменное напряжение, приложенное к нему, в том числе и на напряжение пульсаций (фона) переменного тока. Следовательно, расчет дает величину напряжения фона, приложенного к выводам первичной обмотки выходного трансформатора: 56 мВ — 9,3 мВ = 47 мВ. При максимальной выходной мощности размах амплитуд выходного напряжения составляет 115 В среднеквадратического значения. Таким образом, 47 мВ соответствует уровню отношения сигнал/фон 68 дБ, что явно мало для громкоговорителя с высокой чувствительностью. Следовательно, необходима еще одна ступень (звено) фильтрования пульсаций.

Второе звено сглаживающего LC-фильтра, имеющего ослабление на частоте 100 Гц только 32 дБ, улучшит значение соотношения сигнал/фон до величины 100 дБ. 32 дБ соответствует сорокакратному отношению напряжений, поэтому делитель напряжений, образованный вторым LC фильтром, должен был бы иметь соотношение реактивных сопротивлений XL/XC40. Если бы в наличии был еще один конденсатор с емкостью 120 мкФ, то с лихвой хватило бы дросселя с индуктивностью всего 1 Гн, рассчитанного на ток 130 мА.

Однако у автора не оказалось второй подходящей пары дросселей, и он понял, что конструкция усилителя становится все больше и тяжелее (даже по меркам ламповых усилителей). Хотя дополнительное увеличение массы вовсе не является привлекательной чертой любой разработки. Решить эту дилемму могло бы применение стабилизатора высоковольтного напряжения.

 

 

 

Информация

 

Продолжение

LC-фильтры хороши для снижения фонового напряжения, но их выходной импеданс достаточно высок (составляет десятки Ом). Это обстоятельство особенно важно для однотактных усилителей с несимметричным выходом, так как выходная лампа не может различать приведенную нагрузку со стороны громкоговорителя (через выходной) трансформатор и внутреннее сопротивление источника питания, включенное последовательно с ним (рис. 7.28).

Размах амплитуд напряжения выходной лампы распределяется по этим двум элементам, хотя можно учесть и резистивную составляющую сопротивления, действующую в выходном трансформаторе. При снижении мощности выходное сопротивление возрастает. Стабилизатор высоковольтного напряжения позволяет получить для усилителя с несимметричным выходом оптимальную отдачу высоковольтного питания, и в значительной степени решает эту проблему.

Поскольку, каждый канал усилителя требует напряжения 300 В при силе тока 130 мА, можно в качестве источника высоковольтного напряжения использовать, например, приведенный на рис. 6.46 без каких-то изменений. Однако так как для подавления пульсаций не хотелось бы затрачивать слишком много дополнительных усилий, некоторая адаптация схемы простого двухтранзис-торного стабилизатора, примененного в исходном варианте, может оказаться вполне уместной. Подобная модернизация приведена на рис. 7.29.

Преимуществом стабилизатора, собранного на двух транзисторах, является малое падение напряжения и, следовательно, невысокая рассеиваемая мощность. Можно принять, что падение напряжения на стабилизаторе равно, или превышает 10 В и рассмотреть, что произойдет в случае, когда напряжение сети питания снижается на 6% (если такое возможно). Таким образом, номинальное высоковольтное напряжение, необходимое для подачи на вход стабилизатора, определяется:

Проверка паспортных данных лампы-кенотрона EZ81 показала, что для ее работы необходим силовой трансформатор, у которого высоковольтные обмотки с отводом от средней точки рассчитаны на напряжения 412-0-412 В.

Высоковольтные мощные биполярные транзисторы имеют достаточно низкое значение h-параметра hFE, низкую рабочую частоту и высокую стоимость, поэтому использование в стабилизаторе высоковольтного МОП полевого транзистора может оказаться предпочтительнее при его последовательном включении в схему.

 
 
Сайт создан в системе uCoz