Содержание

Общие сведения,
классификация
Устройство и работа диода
Устройство и работа триода
Электронная эмиссия
Термоэлектронные катоды
Особенности устройства
электронных ламп
Физические процессы
Закон степени трех вторых
Анодная характеристика
Параметры
Рабочий режим. Применение
диода для выпрямления
переменного тока
Основные типы
Физические процессы
Токораспределение
Действующее напряжение и
закон степени трех вторых
Характеристики
Параметры
Особенности
Усилительный каскад с
триодом
Параметры усилительного
каскада
Аналитический расчет и
эквивалентные схемы
усилительного каскада
Графоаналитический расчет
режима усиления
Генератор с триодом
Межэлектродные емкости
Каскады с общей сеткой и
общим анодом
Недостатки триодов
Основные типы приемно-
усилительных триодов
Устройство и работа тетрода
Устройство и работа пентода
Схемы включения тетродов
и пентодов
Характеристики тетродов
и пентодов
Параметры тетродов и
пентодов
Межэлектродные емкости
тетродов и пентодов
Устройство и работа
лучевого тетрода
Характеристики и параметры
лучевого тетрода
Рабочий режим тетродов
и пентодов
Пентоды переменной
крутизны
Краткие сведения о
различных типах
тетродов и пентодов
Специальные лампы
Общие сведения
Электростатические
электронно-лучевые трубки
Магнитные электронно-
лучевые трубки
Люминесцентный экран
Краткие сведения о
различных электронно-
лучевых трубках
Электрический разряд
в газах
Тлеющий разряд
Стабилитроны
Тиратроны тлеющего разряда
Индикаторные приборы
Дисплеи
Краткие сведения о
различных газоразрядных
приборах
Фотоэлектронная эмиссия
Электровакуумные
фотоэлементы
Фотоэлектронные умножители
Причины собственных шумов
Шумовые параметры
Межэлектродные емкости
и индуктивности выводов
Инерция электронов
Наведенные токи в
цепях электродов
Входное сопротивление
и потери энергии
Импульсный режим
Основные типы электронных
ламп для СВЧ
Общие сведения
Пролетный клистрон
Отражательный клистрон
Магнетрон
Лампы бегущей и
обратной волны
Амплитрон и карматрон
Надежность и испытание
электровакуумных приборов
Усилитель на триоде
с общим катодом
Ограничения по выбору
рабочей точки
Режим в рабочей точке
Катодное смещение
Выбор величины
сопротивления резистора
в цепи сетки
Выбор выходного
разделительного
конденсатора
Вредное влияние проходной
емкости лампы и пути
его уменьшения
Применение
экранированных ламп
Каскод (каскодная схема)
Катодный повторитель
Каскад с общим катодом
как приемник
неизменяющегося тока
Пентоды в качестве
приемников
неизменяющегося тока
Катодный повторитель
с активной нагрузкой
Катодный повторитель Уайта
μ-повторитель
Выбор верхней лампы для
μ -повторителя
Параллельно управляемый
двухламповый усилитель
(SRPP)
β-повторитель
Дифференциальная пара
(дифференциальный каскад)
Коэффициент реакции
питающего напряжения
(PSRR)
дифференциальной пары
Полупроводниковые
приемники неизменяющегося
тока для
дифференциальной пары
Использование транзисторов
в качестве активной нагрузки
для электронных ламп
Классификация искажений.
Принципы оценки линейных
искажений
Принципы измерения
нелинейных искажений
Измерение и интерпретация
искажений
Совершенствование
измерений нелинейных
гармонических искажений
Цифровая обработка сигналов
Особенности проектирования
усилителей с малыми
искажениями
Работа с сеточным током
и нелинейные искажения
Уменьшение искажений
подавлением (компенсацией)
Проблемы смещения
по постоянному току
Выбор электронной лампы по
критерию низких искажений
Проблема сопряжения одного
каскада со следующим
Усилитель класса А для
электромагнитных головных
телефонов с непосредств.
междукаскадной связью
Радиокомпоненты -
Общие сведения
Ряды стандартизованных
значений сопротивлений
Металлизированные
пленочные резисторы
Проволочные резисторы
Конденсаторы -
Общие сведения
Металлические конденсаторы
с воздушным диэлектриком
Пленочные конденсаторы,
изготовленные
металлизацией диэлектрика
Алюминиевые
электролитические
конденсаторы
Основные вопросы,
возникающие при
выборе конденсатора
Общие сведения о
катушках индуктивности
Трансформаторы -
Общие сведения
Трансформаторы.
Намагничивание и потери
Модели трансформаторов
Почему необходимо
использовать трансформаторы
Определение параметров
неизвестного трансформатора
Основные виды
источников питания
Выпрямление переменного
тока
Одиночный накопительный
конденсатор в роли
сглаживающего элемента
Влияние напряжения
пульсаций на выходное
напряжение
Насыщение сердечника
трансформатора
Критерии выбора силового
трансформатора
Источник питания со
сглаживающим дросселем
Номинальное значение
тока дросселя
Выбросы тока и
демпфирующие элементы
Использование накопительного
конденсатора для снижения
высоковольтного напряжения
Частотные характеристики
используемых на практике
LC-фильтров
Широкополосная фильтрация
Выпрямители с умножением
(умножители) напряжения
Классическая схема
последовательного
стабилизатора
Двухтранзисторная схема
последовательного
стабилизатора
Стабилизатор цепи сеточного
смещения с регулируемым
выходным напряжением
Источники питания низкого
напряжения и синфазный шум
Ламповый стабилизатор
напряжения
Способы увеличения
выходного тока стабилизатора
Коэффициент режекции
источника питания
Включение сглаживающих
конденсаторов
Перенапряжения при
включении схемы
Составление предварительной
схемы блока питания
Высоковольтный выпрямитель
и стабилизатор
Особенности смещения
подогревателей ламп
Схема улучшенного
источника питания
Рабочий режим
Увеличение максимально
допустимого Vrrm
Выходной каскад класса А
с несимметричным выходом
Особенности акустических
систем
Неидеальности
трансформаторов
Режимы работы усилительных
приборов. Классы усилителей
Двухтактный выходной каскад
Выходной каскад по
ультралинейной схеме
Трансформаторный катодный
повторитель
Усилители без выходного
трансформатора
Составляющие блока
усилителя мощности
Предоконечный каскад блока
усилителя мощности
Фазоинверсный каскад
Дифференциальный усилитель
или пара с катодной связью
«Согласованный»
фазоинвертор
Общие проблемы
устойчивости усилителей
Подавление первой
доминанты ВЧ составляющей
Низкочастотное
самовозбуждение усилителя
Усилитель Williamson
Усилитель Milliard 5-20
Усилитель Quad II
Выбор выходной лампы
Выбор статической рабочей
точки с учетом Pвых и КНИ
Точное определение
выходного трансформатора
Особенность выпрямление
высоковольтного напряжения
Варианты применения
стабилизатора ВВ напряжения
Требования к каскаду
предоконечного усиления
Определение рабочей точки
предоконечного каскада
Проверка работоспособности
усилителя
Пример разработки
двухтактного УМ
Оптимизация входного и
фазоинверсного каскадов
Расчет R катодного смещения
лампы и R обратной связи
Выбор элементов
оконечного каскада
Разработка усилителей
мощностью более 10 Вт
Активные кроссоверы
и схема Зобеля
Выбор лампы для
оконечного каскада
Требования к предоконечному
каскаду усиления
Источники питания и
постоянная токовая нагрузка
Второй дифференциальный
усилитель и выходной каскад
Первый дифференциальный
усилитель и линейность х-ки
Каскодная схема постоянной
токовой нагрузки
Постоянная токовая нагрузка
первого диф. каскада
Элементы, повышающие ВЧ
устойчивость. Итоговая схема
Схема источника питания
«Потомок от усилителя Beast»
Расчет уровня фонового
шума от ИП
Особенности цифрового
сигнала от компакт-диска
Требования к предусилителю
Технические требования
к линейному каскаду
Традиционный линейный
каскад
Пути достижения заданных
требований и выбор лампы
Основные проблемы
регулирования громкости
Переключаемые аттенюаторы
Расчет переключаемого
аттенюатора
Табличные вычисления для
расчета регулятора громкости
Светочувствительные
резисторы и громкость
Входной переключатель
Частотный корректор RIAA
Влияние провода
звукоснимателя
Требования к блоку
частотной коррекции
Метод частотной коррекции
стандарта RIAA
Раздельное выравнивание
характеристики RIAA
Шумы и влияние входной
емкости входного каскада
Учет собственных
шумов лампы
Улучшение шумовых
характеристик с RIAA
Расчет элементов на 75 мкс
Параметры цепей на
3180 мкс и 318 мкс
Симметричный вход и
подключение звукоснимателя
Симметричный предусилитель
Возможности исключения
линейного каскада
Вариант RIAA с исполь-
зованием лампы типа ЕС8010
Оптимизация характеристик
входного трансформатора
Анализ работы блока RIAA
Практические методы
настройки блока RIAA
Линейный каскад
О межблочных и
акустических кабелях

 

 
 

Способы увеличения выходного тока стабилизатора

Большая часть усилительных схем, которые применяются в осциллографах и аудиоаппаратуре, относится к классу А, поэтому они характеризуются почти неизменной величиной потребляемого тока. Одной из функций стабилизатора напряжения является поддержание постоянного значения выходного напряжения при изменениях тока нагрузки, однако, если ток нагрузки меняется очень незначительно, то тогда большая часть затрачиваемой стабилизатором энергии тратится непроизводительно. Например, стабилизатор предназначен для нагрузки с током в рабочей точке, составляющим 100 мА, однако, при определенных обстоятельствах ток может возрасти до 150 мА, либо упасть до 50 мА. Можно рассчитать схему стабилизатора, предназначенного для тока в 150 мА, однако, это, скорее всего, потребовало бы использовать более мощную проходную лампу. Вместо этого можно зашунтировать последовательно включенную проходную лампу стабилизатора резистором, который позволит протекать лишним 50 мА тока непосредственно в нагрузку. В этом случае при полной нагрузке проходная лампа должна будет пропускать ток величиной всего 100 мА. Однако, когда ток нагрузки будет составлять 50 мА, то требуемое значение тока будет обеспечиваться только за счет шунтирующего резистора, но при этом может возникнуть опасность для стабилизатора выпасть из режима стабилизации. Поэтому, последнее условие накладывает ограничение на максимальное значение тока, который может быть пропущен через шунтирующий резистор.

Введение в схему шунтирующего резистора несколько увеличивает уровень пульсаций, так за его счет происходит ввод части несглаженного высоковольтного напряжения в схему, однако, в силу того, что выходное сопротивление стабилизатора напряжения не превышает, как правило, величины 1 Ом, действие делителя напряжения значительно ослабляет добавляемую часть пульсаций.

В качестве примера на рис. 6.38 приводится схема, в которой использованы два способа модификации схемы стабилизатора.

Однако для стабилизатора напряжения характерны и некоторые другие особенности, позволяющие улучшить его рабочие характеристики.

Как указывалось ранее, применение неоновой газоразрядной лампы в качестве источника опорного напряжения характеризуется очень высоким уровнем шумов, однако, так как выбор был остановлен на использовании дифференциального усилителя, неоновая лампа будет работать на входе высоким значением сопротивления, поэтому для снижения шума можно ввести в схему фильтр. Конденсатор, который прежде включался параллельно источнику опорного напряжения, был удален из схемы из-за опасности, что он вызовет генерацию при возбуждении выбросами (скачками) напряжения (ранее они подавлялись за счет резистора rk самой лампы). Более того, ток, протекающий по неоновой лампе-стабилитрону, служащей источником опорного напряжения, был уже стабилизирован до предпочтительного значения рабочего тока, в силу чего скачки окажутся минимальными.

Анодные напряжения ламп типа ЕСС83, используемых в схеме дифференциального усилителя, составляют 209 В, и, хотя казалось бы, что вполне возможно было бы подать эти напряжения непосредственно на сетку пентода EF91, при этом оказалось бы, что необходимые напряжения на катоде составили бы примерно 213 В. Это не только вызвало бы проблемы, связанные с большим значением напряжения между катодом и подогревателем Vhk, но также снизило бы коэффициент усиления за счет необходимости иметь высокое значение сопротивления для резистора Rk. Чтобы уменьшить влияние данной проблемы, значение катодного напряжения Vk было уменьшено до точно такого же значения, которое использовалось для питания катодов лампы ЕСС83, что позволило также использовать для них общий источник питания. Можно было бы просто подключить катодный резистор на землю, однако, делитель напряжения, включенный параллельно стабилизированному выходу, может устанавливать необходимое значение напряжения и обеспечивать значительно меньшее значение выходного сопротивления эквивалентной схемы замещения Тевенина (15 кОм по сравнению с сопротивлением 800 кОм). Принципиальная роль данного резистора заключается в том, что он снижает общее усиление каскада, поэтому необходимо как можно меньшее значение сопротивления для того, чтобы обеспечить максимальное значение усиления с разомкнутой петлей обратной связи в стабилизаторе напряжения.

Оптимизированная схема лампового стабилизатора напряжения

Рис. 6.38 Оптимизированная схема лампового стабилизатора напряжения

Для связи анода лампы ЕСС83 с лампой EF91 необходимо использовать делитель напряжения, чтобы снизить напряжение с 209 В до значения 90 В, таким образом приносится в жертву примерно 7 дБ усиления по постоянному току петли с разомкнутой обратной связью. Однако данная жертва является полностью оправданной, так как коэффициент усиления восстанавливается быстрее за счет снижения напряжения Vk (и снижения локальной обратной связи) на лампе EF91 по сравнению с той потерей, которая вызвана делителем напряжения. В конце концов, выбор величины напряжения Vk обычно определяется величиной предельного напряжения между катодом и подогревателем, Vhk. Тем ни менее, можно восстановить усиление по постоянному току, если параллельно верхнему резистору включить конденсатор.

У лампы ЕСС83 дифференциального усилителя имеется вывод, через который задается постоянная по величине токовая нагрузка. Если бы использовался источник питания с симметрично распределенными шинами, то можно было бы просто использовать общий резистор цепи питания дифференциального усилителя, имеющий большое значение сопротивления, подключенный к противоположенному источнику питания, однако в случае общего источника питания необходимо использовать элемент, задающий постоянную токовую нагрузку.

В итоге, из-за сильно возросшего коэффициента усиления разомкнутой петли обратной связи стабилизатор напряжения имеет намного меньшее значение выходного сопротивления по постоянной составляющей, чем это было раньше (менее 10 МОм), поэтому он должен иметь соответствующе большое значение шунтирующего конденсатора, чтобы обеспечить низкое значение выходного импеданса на высоких частотах. Электролитический конденсатор с низким значением эквивалентного последовательного сопротивления, предназначенный для использования в импульсных источниках питания, является идеальным вариантом.

Как можно видеть из изложенного материала, очень многое может быть сделано для улучшения работы схемы лампового стабилизатора напряжения, однако все это достигается за счет значительного усложнения исходной схемы.

 

 

 

Информация

 

Продолжение

Хотя для создания звуковоспроиз-водящей системы можно пойти по пути проектирования отдельных каскадов и последующего их объединения в единое целое, однако для каждого каскада будет необходимо высоковольтное напряжение, которое было бы разумным брать от единого для всех каскадов источника питания. Ни один источник питания не обладает на практике нулевым выходным сопротивлением, хотя сети питания переменного тока можно рассматривать таковыми в качестве достаточно хорошего приближения.

Создание общего источника питания с ненулевым значением выходного сопротивления имеет критически важное значение, так как это подразумевает, что если конкретный каскад звуковоспроиз-водящей системы потребляет не постоянный по величине ток (в соответствие с изменением звукового сигнала), на внутреннем сопротивлении источника питания будет возникать падение переменного напряжения. Хотя это напряжение и будет уменьшено за счет коэффициента режекции источника питания индивидуального каскада, это напряжение всегда будет присутствовать на входе каждого из всех остальных каскадов, а в случае, если коэффициент усиления между каскадами имеет значительную величину (как это, например, наблюдается для каскада частотной коррекции RIAA) пока коэффициент режекции источника питания мал, то затем коэффициент усиления петли, замкнутой через источник питания, может возрасти до значения, превышающего единицу, что приведет к режиму самовозбуждения (автогенерации).

Для обеспечения устойчивой работы усилителя, необходимо исключить попадания выходного сигнал любого каскада усиления в цепи питания других усилительных каскадов. Для этой цели в схемы каскадов вводятся дополнительные блокировочные элементы и развязывающие (демпфирующие) цепи. Это позволяет улучшить коэффициент реакции источника питания.

В традиционной схеме межкаскадного фильтра используется шунтирующий конденсатор для того, чтобы согласовать сопротивление источника (точнее говоря, его комплексное сопротивление — импеданс), что приводит к увеличению импеданса источника на нижних частотах в соответствие с выражением:

 
 
Сайт создан в системе uCoz