Содержание

Общие сведения,
классификация
Устройство и работа диода
Устройство и работа триода
Электронная эмиссия
Термоэлектронные катоды
Особенности устройства
электронных ламп
Физические процессы
Закон степени трех вторых
Анодная характеристика
Параметры
Рабочий режим. Применение
диода для выпрямления
переменного тока
Основные типы
Физические процессы
Токораспределение
Действующее напряжение и
закон степени трех вторых
Характеристики
Параметры
Особенности
Усилительный каскад с
триодом
Параметры усилительного
каскада
Аналитический расчет и
эквивалентные схемы
усилительного каскада
Графоаналитический расчет
режима усиления
Генератор с триодом
Межэлектродные емкости
Каскады с общей сеткой и
общим анодом
Недостатки триодов
Основные типы приемно-
усилительных триодов
Устройство и работа тетрода
Устройство и работа пентода
Схемы включения тетродов
и пентодов
Характеристики тетродов
и пентодов
Параметры тетродов и
пентодов
Межэлектродные емкости
тетродов и пентодов
Устройство и работа
лучевого тетрода
Характеристики и параметры
лучевого тетрода
Рабочий режим тетродов
и пентодов
Пентоды переменной
крутизны
Краткие сведения о
различных типах
тетродов и пентодов
Специальные лампы
Общие сведения
Электростатические
электронно-лучевые трубки
Магнитные электронно-
лучевые трубки
Люминесцентный экран
Краткие сведения о
различных электронно-
лучевых трубках
Электрический разряд
в газах
Тлеющий разряд
Стабилитроны
Тиратроны тлеющего разряда
Индикаторные приборы
Дисплеи
Краткие сведения о
различных газоразрядных
приборах
Фотоэлектронная эмиссия
Электровакуумные
фотоэлементы
Фотоэлектронные умножители
Причины собственных шумов
Шумовые параметры
Межэлектродные емкости
и индуктивности выводов
Инерция электронов
Наведенные токи в
цепях электродов
Входное сопротивление
и потери энергии
Импульсный режим
Основные типы электронных
ламп для СВЧ
Общие сведения
Пролетный клистрон
Отражательный клистрон
Магнетрон
Лампы бегущей и
обратной волны
Амплитрон и карматрон
Надежность и испытание
электровакуумных приборов
Усилитель на триоде
с общим катодом
Ограничения по выбору
рабочей точки
Режим в рабочей точке
Катодное смещение
Выбор величины
сопротивления резистора
в цепи сетки
Выбор выходного
разделительного
конденсатора
Вредное влияние проходной
емкости лампы и пути
его уменьшения
Применение
экранированных ламп
Каскод (каскодная схема)
Катодный повторитель
Каскад с общим катодом
как приемник
неизменяющегося тока
Пентоды в качестве
приемников
неизменяющегося тока
Катодный повторитель
с активной нагрузкой
Катодный повторитель Уайта
μ-повторитель
Выбор верхней лампы для
μ -повторителя
Параллельно управляемый
двухламповый усилитель
(SRPP)
β-повторитель
Дифференциальная пара
(дифференциальный каскад)
Коэффициент реакции
питающего напряжения
(PSRR)
дифференциальной пары
Полупроводниковые
приемники неизменяющегося
тока для
дифференциальной пары
Использование транзисторов
в качестве активной нагрузки
для электронных ламп
Классификация искажений.
Принципы оценки линейных
искажений
Принципы измерения
нелинейных искажений
Измерение и интерпретация
искажений
Совершенствование
измерений нелинейных
гармонических искажений
Цифровая обработка сигналов
Особенности проектирования
усилителей с малыми
искажениями
Работа с сеточным током
и нелинейные искажения
Уменьшение искажений
подавлением (компенсацией)
Проблемы смещения
по постоянному току
Выбор электронной лампы по
критерию низких искажений
Проблема сопряжения одного
каскада со следующим
Усилитель класса А для
электромагнитных головных
телефонов с непосредств.
междукаскадной связью
Радиокомпоненты -
Общие сведения
Ряды стандартизованных
значений сопротивлений
Металлизированные
пленочные резисторы
Проволочные резисторы
Конденсаторы -
Общие сведения
Металлические конденсаторы
с воздушным диэлектриком
Пленочные конденсаторы,
изготовленные
металлизацией диэлектрика
Алюминиевые
электролитические
конденсаторы
Основные вопросы,
возникающие при
выборе конденсатора
Общие сведения о
катушках индуктивности
Трансформаторы -
Общие сведения
Трансформаторы.
Намагничивание и потери
Модели трансформаторов
Почему необходимо
использовать трансформаторы
Определение параметров
неизвестного трансформатора
Основные виды
источников питания
Выпрямление переменного
тока
Одиночный накопительный
конденсатор в роли
сглаживающего элемента
Влияние напряжения
пульсаций на выходное
напряжение
Насыщение сердечника
трансформатора
Критерии выбора силового
трансформатора
Источник питания со
сглаживающим дросселем
Номинальное значение
тока дросселя
Выбросы тока и
демпфирующие элементы
Использование накопительного
конденсатора для снижения
высоковольтного напряжения
Частотные характеристики
используемых на практике
LC-фильтров
Широкополосная фильтрация
Выпрямители с умножением
(умножители) напряжения
Классическая схема
последовательного
стабилизатора
Двухтранзисторная схема
последовательного
стабилизатора
Стабилизатор цепи сеточного
смещения с регулируемым
выходным напряжением
Источники питания низкого
напряжения и синфазный шум
Ламповый стабилизатор
напряжения
Способы увеличения
выходного тока стабилизатора
Коэффициент режекции
источника питания
Включение сглаживающих
конденсаторов
Перенапряжения при
включении схемы
Составление предварительной
схемы блока питания
Высоковольтный выпрямитель
и стабилизатор
Особенности смещения
подогревателей ламп
Схема улучшенного
источника питания
Рабочий режим
Увеличение максимально
допустимого Vrrm
Выходной каскад класса А
с несимметричным выходом
Особенности акустических
систем
Неидеальности
трансформаторов
Режимы работы усилительных
приборов. Классы усилителей
Двухтактный выходной каскад
Выходной каскад по
ультралинейной схеме
Трансформаторный катодный
повторитель
Усилители без выходного
трансформатора
Составляющие блока
усилителя мощности
Предоконечный каскад блока
усилителя мощности
Фазоинверсный каскад
Дифференциальный усилитель
или пара с катодной связью
«Согласованный»
фазоинвертор
Общие проблемы
устойчивости усилителей
Подавление первой
доминанты ВЧ составляющей
Низкочастотное
самовозбуждение усилителя
Усилитель Williamson
Усилитель Milliard 5-20
Усилитель Quad II
Выбор выходной лампы
Выбор статической рабочей
точки с учетом Pвых и КНИ
Точное определение
выходного трансформатора
Особенность выпрямление
высоковольтного напряжения
Варианты применения
стабилизатора ВВ напряжения
Требования к каскаду
предоконечного усиления
Определение рабочей точки
предоконечного каскада
Проверка работоспособности
усилителя
Пример разработки
двухтактного УМ
Оптимизация входного и
фазоинверсного каскадов
Расчет R катодного смещения
лампы и R обратной связи
Выбор элементов
оконечного каскада
Разработка усилителей
мощностью более 10 Вт
Активные кроссоверы
и схема Зобеля
Выбор лампы для
оконечного каскада
Требования к предоконечному
каскаду усиления
Источники питания и
постоянная токовая нагрузка
Второй дифференциальный
усилитель и выходной каскад
Первый дифференциальный
усилитель и линейность х-ки
Каскодная схема постоянной
токовой нагрузки
Постоянная токовая нагрузка
первого диф. каскада
Элементы, повышающие ВЧ
устойчивость. Итоговая схема
Схема источника питания
«Потомок от усилителя Beast»
Расчет уровня фонового
шума от ИП
Особенности цифрового
сигнала от компакт-диска
Требования к предусилителю
Технические требования
к линейному каскаду
Традиционный линейный
каскад
Пути достижения заданных
требований и выбор лампы
Основные проблемы
регулирования громкости
Переключаемые аттенюаторы
Расчет переключаемого
аттенюатора
Табличные вычисления для
расчета регулятора громкости
Светочувствительные
резисторы и громкость
Входной переключатель
Частотный корректор RIAA
Влияние провода
звукоснимателя
Требования к блоку
частотной коррекции
Метод частотной коррекции
стандарта RIAA
Раздельное выравнивание
характеристики RIAA
Шумы и влияние входной
емкости входного каскада
Учет собственных
шумов лампы
Улучшение шумовых
характеристик с RIAA
Расчет элементов на 75 мкс
Параметры цепей на
3180 мкс и 318 мкс
Симметричный вход и
подключение звукоснимателя
Симметричный предусилитель
Возможности исключения
линейного каскада
Вариант RIAA с исполь-
зованием лампы типа ЕС8010
Оптимизация характеристик
входного трансформатора
Анализ работы блока RIAA
Практические методы
настройки блока RIAA
Линейный каскад
О межблочных и
акустических кабелях

 

 
 

Физические процессы

Рассмотрим диод с плоскими электродами. Анодное напряжение создает между анодом и катодом электрическое поле. Если нет электронной эмиссии катода, то поле будет однородным. Когда катод испускает большое число электронов, то они в пространстве анод — катод создают отрицательный объемный (пространственный) заряд, препятствующий движению электронов к аноду. Наиболее плотный объемный заряд («электронное облачко») вблизи катода (рис. 16.1). За счет объемного заряда электрическое поле становится неоднородным.

Возможны два основных режима работы диода. Если поле на всем протяжении от катода до анода ускоряющее, то любой электрон, вылетевший из катода, ускоренно движется на анод. Ни один электрон не возвращается на катод, и анодный ток будет наибольшим, равным току эмиссии. Это режим насыщения. Ему соответствует анодный ток насыщения

Is = Ie. (16.1)

Второй — режим объемного заряда (точнее, режим ограничения анодного тока объемным зарядом), когда вблизи катода поле является тормозящим. Тогда электроны, имеющие малую начальную скорость, не могут преодолеть тормозящее поле и возвращаются на катод. Электроны с большей начальной скоростью не теряют полностью свою энергию в тормозящем поле и летят к аноду.

Объемный электронный заряд в диоде

Рис. 16.1. Объемный электронный заряд в диоде

 

В этом режиме анодный ток меньше тока эмиссии:

ia < Ie. (16-2)

Наглядное представление о процессах в диоде дают потенциальные диаграммы, показывающие распределение потенциала в пространстве анод — катод (рис. 16.2). По горизонтальной оси откладывают расстояние от катода, а по вертикальной — потенциал, причем положительный принято откладывать вниз. Потенциал катода принимается за нулевой.

Когда катод не накален, то объемный заряд отсутствует и поле однородно. Потенциал растет пропорционально расстоянию от данной точки до катода (прямая 1). Если же катод накален, то существует объемный отрицательный заряд, и тогда потенциалы всех точек понизятся, за исключением потенциалов катода и анода, так как анодное напряжение задается внешним источником. Линия распределения потенциала прогнется вверх (кривая 2). Когда объемный заряд небольшой, то во всех точках потенциал остается положительным (кривая 2 находится ниже горизонтальной оси) и поле будет ускоряющим, что соответствует режиму насыщения. При увеличении накала катода объемный заряд также растет и потенциал в различных точках понижается еще больше. Кривая распределения потенциала прогибается сильнее, и отрицательный потенциал вблизи катода может превысить по абсолютному значению положительный потенциал ускоряющего поля анода. Результирующий потенциал становится отрицательным, что наглядно изображает кривая 3, которая вблизи катода расположена выше горизонтальной оси.

Потенциальные диаграммы диода при постоянном анодном напряжении и разном напряжении накала

Рис. 16.2. Потенциальные диаграммы диода при постоянном анодном напряжении и разном напряжении накала

 

На некотором расстоянии х0 от катода потенциал становится минимальным (φмин) и обычно составляет десятые доли вольта. На этом участке электрическое поле является тормозящим. Около катода образуется потенциальный барьер. На анод попадают только те электроны, у которых начальная скорость достаточна для преодоления потенциального барьера. Электроны с меньшей начальной скоростью теряют энергию, не дойдя до «вершины» потенциального барьера. Они возвращаются на катод. Кривая 3 соответствует режиму объемного заряда. Следующее увеличение накала характеризует кривая 4: потенциальный барьер стал выше и «отодвинулся» от катода.

Все это иллюстрирует следующая механическая аналогия. Пусть кривые на рис. 16.2 изображают рельеф местности, а из точки О выкатываются с различными скоростями шарики (электроны, вылетающие из катода). Если от точки О начинается уклон (рельеф 1 и 2), все шарики скатываются вниз. Но если рельеф соответствует кривой 3, то вначале имеется горка и через нее перекатятся только шарики с достаточной начальной скоростью. А шарики с меньшими начальными скоростями скатятся обратно. Именно для удобного перехода к механической аналогии было выбрано положительным направление вниз по оси ординат.

На рис. 16.3 даны потенциальные диаграммы при различном анодном напряжении и постоянном напряжении накала. При некотором значении Ua наступает режим насыщения (кривая 1), при меньшем напряжении — режим объемного заряда (кривая 2). Кривая 3 для еще более низкого напряжения показывает, что потенциальный барьер стал выше. Кривая 4 соответствует напряжению Ua = 0. Для получения Ua = 0 надо замкнуть анод с катодом. В этом случае в пространстве анод — катод электроны создают объемный заряд и повышается потенциальный барьер. Электроны, обладающие большими начальными скоростями, преодолевают этот барьер и долетают до анода. Таким образом, при Ua = 0 возникает небольшой анодный ток, называемый начальным (I0).

Потенциальные диаграммы диода при постоянном напряжении накала и разном анодном напряжении

Рис. 16.3. Потенциальные диаграммы диода при постоянном напряжении накала и разном анодном напряжении

 

Кривая 5 соответствует разрыву цепи анода. В первый момент после размыкания анод имеет нулевой потенциал, что соответствует кривой 4. Тогда на анод попадают электроны и он заряжается отрицательно. Правый конец диаграммы сдвигается вверх (кривая 5), потенциальный барьер повышается, и на анод попадает все меньше электронов. Когда барьер настолько увеличится, что ни один электрон не сможет его преодолеть, возрастание отрицательного потенциала анода прекратится.

Теоретическая анодная характеристика диода, или график закона степени трех вторых (полукубическая парабола)

Рис. 16.4. Теоретическая анодная характеристика диода, или график закона степени трех вторых (полукубическая парабола)

 

Действительная анодная характеристика диода

Рис. 16.5. Действительная анодная характеристика диода

 

Таким образом, изменение анодного тока при изменении анодного напряжения в режиме объемного заряда происходит за счет изменения высоты потенциального барьера около катода. Если анодное напряжение увеличивается, то барьер становится ниже, его преодолевает больше электронов и анодный ток возрастает. При уменьшении анодного напряжения потенциальный барьер повышается, меньше электронов может его преодолеть, больше электронов возвращается на катод, т. е. анодный ток уменьшается.

     >>>>>     0
!...................
20
!...................
40
!...................
60
!...................
80
!...................
100
!...................
120
!...................
 

 

 

Информация

 

Продолжение

Для диода, работающего в режиме объемного заряда, анодный ток и анодное напряжение связаны нелинейной зависимостью, которая приближенно выражается законом степени трех вторых:

ia = gua3/2, (16.3)

где коэффициент g зависит от геометрических размеров и формы электродов.

Анодный ток пропорционален анодному напряжению в степени три вторых (3/2), а не в первой степени, как в законе Ома. Если увеличить, например, анодное напряжение вдвое, то анодный ток возрастет в 2,8 раза (так как

23/2 = √23 ≈ 2,8), т.е. станет на 40% больше, чем должен быть по закону Ома. Графически этот закон изображается полу кубической параболой (рис. 16.4). Закон степени трех вторых неприменим для режима насыщения, когда ia = = Is = const. Кривую ОАБ иногда называют теоретической характеристикой диода.

Для диода с плоскими электродами

g = 2,33·10-6Qa/da-k2, (16.4)

где Qa — действующая площадь анода; da-k — расстояние анод — катод.

Истинная зависимость, между анодным током и анодным напряжением заметно отличается от закона степени трех вторых. Но, несмотря на неточность, закон степени трех вторых в простой форме учитывает нелинейные свойства лампы.

 
 
Сайт создан в системе uCoz