Содержание

 

 
 

Для положительной полуволны амплитуда сеточного напряжения U

1. Шумы и влияние входной емкости входного каскада

Таким образом, в резисторе происходит генерация шумов, амплитуда которых обратно пропорциональна частоте (шум вида 1/f), но амплитуда которых приближается к максимальному теоретическому значению тепловых шумов для такого же значения сопротивлени...

2. Параллельно управляемый двухламповый усилитель (SRPP)

Очевидным решением было увеличить ток покоя в каскаде, но это будет расточительным использованием электричества — потому что в реальных изображениях максимальная амплитуда высокочастотного сигнала появляется очень редко (в отличие от испытательных сигналов). Двухламповый усилительный каскад SRPP как раз и решает проблему вредного шунтирующего действия емкостной составляющей нагрузки (включая выходную емкость самой лампы, емкость монтажа и т. п.) без необходимости увеличения тока покоя, либо выходной мощности. Упрощенная схема такого каскада показана на рис. 3.35. Нижняя лампа является основным усилителем, а верхняя лампа регулятором. Выше было показано, что из-за вредного влияния емкостной составляюще...

3. Рабочий режим триода - Параметры усилительного каскада

Однако он непригоден для расчета режима колебаний с малыми амплитудами. ...

4. Режим в рабочей точке

Этот эффект напрямую связан с нелинейностью статических характеристик лампы и проявляется тем сильнее, чем больше амплитуда сигнала. Чтобы максимизировать линейность, поместим рабочую точку в область, где по нагрузочной прямой (по возможности наименьшие) в обе стороны от характеристики соответствующей напряжению смещения равны. В этом случае потребуется подвести положительное напряжение на анод 182 В, одновременно прикладывая — 1,5 В на сетку. Предположим, что мы выбрали линейный подход, и теперь нужно определить динамический режим или режим переменного каскада по пер...

5. Выбор электронной лампы по критерию низких искажений

Декет писал, что карбонизированные колбы уменьшают искажения при максимальной мощности, но эта серия испытаний показывает, что улучшение пропорционально уровню, и что карбонизированные колбы существенно уменьшают искажения на малых амплитудах; • лампы типа RCA 6J5 имеют значительно более высокие искажения, чем тип 6J5GT, возможно из-за увеличенного количества ионов, порождаемых выделением газа металлическими колбами, что вызывает увеличение сеточного тока; • несмотря на наличие прозрачной колбы, лампа 6J5GT (сделана в СССР в 1930-е годы) генерирует очень низкие ...

6. Особенности проектирования усилителей с малыми искажениями

Сеточный ток вызывает намного больше проблем, поскольку может появляться только при больших амплитудах усиливаемого сигнала, создавая нелинейную нагрузку предыдущему каскаду усиления. Разумеется, для снижения нелинейных искажений, всегда нужно стремиться к полному отсутствию сеточного тока во всем диапазоне изменения входного сигнала. Искажения из-за с...

7. Многоэлектродные и специальные лампы - Рабочий режим тетродов и пентодов

Если сопротивление нагрузки RН2 мало, то длина рабочего участка А2Б2 увеличивается. Амплитуда переменного анодного тока будет большой, но амплитуда переменного напряжения невелика. По...

8. Цифровая обработка сигналов

В процессе кадрирования либо происходит «сброс» энергии элементов дискретизации с высокими амплитудами в смежные элементы дискретизации, что порождает видимую «кайму» в окрестностях дискретных спектральных составляющих, имеющих ...

9. Второй дифференциальный усилитель и ток выходного каскада

Так как от второго дифференциального усилителя требуется соблюдение максимальной линейности при всех амплитудах усиливаемого напряжения, включая пиковые, то источник отрицательной полярности рассматриваемой двухполярной системы питания, должен подбираться с учетом максимального размаха напряжения между катодом и анодом, которое составляет 260 В....

10. Источник питания со сглаживающим дросселем

Если принять, что только амплитуда второй гармоники выпрямленного тока вносит существенный вклад в образование пульсаций, то указанное выражен...

11. Выходной каскад класса А с несимметричным выходом

Промышленные приемо-усилительные электронные лампы, предназначенные для работы в диапазоне звуковых частот, являются приборами с высоким импедансом (высокими значениями входного и выходного сопротивления), при этом амплитуда выходного напряжения усилительных каскадов может составлять несколько сотен вольт, но значение тока не будет превышать несколько десятков миллиампер. Однако применяемый в качестве нагрузки громкоговоритель, имеющий, как правило, номинальное значение входного сопротивления порядка 4—8 Ом, требует напряжения питания в несколько десятков вольт, но значения токов при этом достигают нескольких ампер. Таким образом, необходимо согласование выходного каскада лампового усилит...

12. Разработка усилителей мощностью более 10 Вт

Как правило, максимум выходной мощности измеряется с уровнем искажений 10%, или с началом ограничения (точки, в которой у сигнала синусоидальной формы начинается ограничиваться амплитуда, или, иначе говоря, «срезаться» вершина), и частотой импульсов сигнала (атак) 1 кГц, возбуждающего один канал, работающий на чисто резистивную нагрузку. В соответствии с таким определением проще просто переделать усилитель, имеющий мощность 20 Вт и посредственный по своим характеристикам источник питания, в модель с мощностью в 50 Вт. А если после этого удвоить выходную мощность, считая на два канала усиления, то можно запросто получить усилитель с мощностью 100 Вт. В приведенных выше аргументах были использованы, по крайней мере, четыре ложных довода, но это ничто...

13. Рабочий режим триода - Аналитический расчет и эквивалентные схемы усилительного каскада

Эту формулу применяют и для амплитудных значений: Ima = μUmg/ (Ri + RН). (18.32) Если найдена амплитуда переменной составляющей анодного тока, то легко определить выходное напряжение и выходную мощность. Иногда лампу удобно представить в виде эквивалентного генератора тока. Всякий генератор Э...

14. Рабочий режим триода - Межэлектродные емкости

Выразим каждый ток по закону Ома: Img-к = UmgωСg-к и Ima-g = Uma-gωСа-g, (18.55) где Uma-g — амплитуда напряжения между анодом и сеткой. Так как переменные напряжения сетки и анода Umg и Uma сдвинуты по фазе на 180°, то напряжение Uma-g равно их сумме: Uma-g = Umg – (-Uma) = Umg+Uma. (18.56) Вынесем в этом выражении за скобку Umg. Тогда получим Uma-g =Uma (l + Uma/Umg)=Umg(l+K). (18.57) Отсюда следует Im= UmgωСg-к + UmgωСa-g (l + K) = Umgω[Сg-к + Сa-g (l + K)]. (18.58) Выражение в квадратных скобках представляет собой входную рабочую емкость усилител...

15. Специальные электронные приборы для СВЧ - Пролетный клистрон

Настраивая резонатор Р2 на частоту той или иной гармоники, получают колебания умноженной частоты. Амплитуда гармоник с повышением их номера убывает медленно. Возможно умножение частоты в 10 раз и более. Для усиления слабых сигналов в приемниках клистроны малопригодны, так как создают большие собственные шумы. В настоящее время изготовляются главным образом пролетные многорезонаторные клистроны, которые сложнее двухрезонаторных по устройству, но обладают некоторыми преимуществами. У многорезонаторных клистронов первый резонатор служит входным, а последний выходным. Промеж...

16. Рабочий режим триода - Графоаналитический расчет режима усиления

Работа лампы в режиме усиления Если же работа происходит в области нелинейных участков характеристик, то положительная полуволна усиливается больше, чем отрицательная: Ima´ > Ima´´ В этом случае амплитуда полезной первой гармоники Ima ≈0,5 (Ima´ + Ima´´ ) (18.41) или Ima ≈0,5(iamax - iamin). (18.42) Амплитуда второй гармоники Ima2 ≈0,25(Ima´ - Ima´´ ) (18.43) или Ima2 ≈ 0,25 (iamax + iamin – 2Iа0). (18.44) Коэффициент гармоник приближенно можно определить, учитывая только вторую гармонику: kг = I...

17. Особенности работы электронных ламп на СВЧ - Входное сопротивление и потери энергии

Приведенный расчет сопротивления Rвх справедлив только для малых переменных напряжений. При больших амплитудах переменных напряжений (в генераторах и передатчиках) расчет значительно усложняется. Потери энергии в лампах на СВЧ вызываются и другими причинами. Вследствие поверхностного эффекта увеличивается активное сопротивление электродов и их выводов. По поверхности металлических проводников проходят значительные токи, вызывающие бесполезный нагрев. Также увеличиваются потери во всех твердых диэлектриках, находящихся под воздействием переменного электрического поля, например в стекле баллона. Рис. 24.9. Форма СВЧ-колебаний при работе лампы в импульсном режиме Больш...

     >>>>>     0
!...................
20
!...................
40
!...................
60
!...................
80
!...................
100
!...................
120
!...................
 

 

 

Информация

 

Информация

Так, например, для счета импульсов предназначены приборы тлеющего разряда декатроны с большим числом катодов, расположенных по окружности. Приходящие импульсы переводят разряд с одного катода на следующий. По свечению одного из десяти индикаторных катодов определяется число импульсов. Каскадное включение нескольких декатронов позволяет отсчитывать не только единицы импульсов, но также десятки, сотни, тысячи и т. д. Это достигается тем, что при разряде около десятого катода декатрона, считающего единицы импульсов, передается импульс на следующий декатрон, считающий десятки импульсов, и возникает свечение на первом катоде, и т. д. В настоящее время счетные устройства с цифровыми индикаторами вытеснили декатроны. Среди приборов дугового разряда следует отметить газотроны, представляющие собой мощные диоды с
термоэлектронны-
м катодом, наполненные инертным газом или парами ртути. Они предназначены для выпрямления высоких напряжений и больших токов, причем падение напряжения на самих газотронах всего лишь 10—30 В. В качестве мощных выпрямителей служат также ртутные вентили и экситроны с одним или несколькими анодами, имеющие жидкий ртутный катод с
электростатичес-
кой эмиссией. Более совершенные ртутные вентили — игнитроны имеют также ртутный катод и дополнительный пусковой электрод, облегчающий возникновение дугового разряда. Широко применялись для выпрямления, в схемах автоматики и во многих других устройствах тиратроны дугового разряда. Это газонаполненные триоды с
термоэлектронны-
м катодом. У них, так же как и у тиратронов тлеющего разряда, сетка теряет свое управляющее действие после возникновения дугового разряда, т. е. она может только удерживать тиратрон в запертом состоянии и отпирать его. В некоторых тиратронах имеется еще экранирующая сетка. Изменяя напряжение на ней, можно изменять напряжение возникновения разряда. На тиратронах дугового разряда работают управляемые выпрямители, в которых выпрямленное напряжение регулируется изменением напряжения управляющих сеток тиратронов. Расход мощности на процесс управления в цепях этих сеток очень небольшой, и за счет этого получается высокий КПД. Специальные импульсные тиратроны дугового разряда служат для получения кратковременных импульсов большой мощности. Одна из разновидностей тиратронов дугового разряда — таситроны, в которых благодаря особой конструкции сетка управляет не только возникновением, но и прекращением разряда. Оригинальным прибором является аркатрон, представляющий собой тиратрон дугового разряда, в котором катод

 
 
Сайт создан в системе uCoz