Содержание

 

 
 

Лампы бывают генераторными, усилительными, выпрямительными, частотно-преобразовательными, детекторными, измерительными и др

1. Ограничения по выбору рабочей точки

Итак, на сетку электронной лампы подано напряжение смещения от аккумулятора через резистор Rg, который предотвращает аккумулятор коротко! замыкание источника сигнала (генератора переменного тока) через аккумулятор, поскольку сопротивление аккумулятора переменному току близко к нулю. Cg — разделительный конденсатор, который предотвращает короткое замыкание аккумулятора через генератор, rs — внутренне (выходное) сопротивление генератора. Возвращаясь к выходным статическим характеристикам лампы и нагрузочной линии, обратим внимание, что при сильном увели...

2. Электронно-лучевые трубки - Электростатические электронно-лучевые трубки

Подбор значения п производится изменением частоты генератора развертки. Если п не будет целым числом, то осциллограмма не остается неподвижной и вместо одной кривой наблюдается несколько, что неудобно. На рис. 20.13 показаны осциллограммы синусоидального напряжения при п = 1/2 и п = 3/4. Для упрощения здесь принято, что время обратного хода t2 = 0. Стрелки с цифрами на рисунке указывают последовательность движения пятна на экране. Подобранное целое число п обычно сохраняется лишь короткое время, так как генератор развертки имеет нестабильную частоту, да и частота исследуемого напряжения та...

3. Рабочий режим триода - Межэлектродные емкости

В каскадах, имеющих в качестве нагрузки колебательный контур (в усилителях радиочастоты и генераторах), емкость Са-к входит в состав контура и добавляется к его емкости. При расчете контура емкость Са-к учитывается. На весьма высоких частотах она может оказаться больше емкости контура. Построить такой контур невозможно. Если имеется резонансный контур в цепи сетки, то входная емкость добавляется к емкости этого контура. При смене ламп из-за разброса их межэлектродных емкостей нарушается настройка контуров. Наиболее вредное влияние оказывает проходная емкость Са-g. Прежде всего, она нагружает источник колеба...

4. Многоэлектродные и специальные лампы - Краткие сведения о различных типах тетродов и пентодов

Ряд тетродов применяется в качестве мощных модуляторных ламп для импульсной работы и мощных генераторных ламп; лучевые тетроды — для выходных каскадов усилителей низкой частоты, а также для генераторов и передатчиков. Пентоды — наиболее распространенные лампы. Приемно-усилительные пентоды делятся на маломощные — для работы на высоких и низких частотах и более мощные — для работы на ...

5. Надежность и испытание электровакуумных приборов

Наименьшую надежность имеют мощные генераторные, модуляторные и усилительные лампы, высоковольтные кенотроны и другие мощные приборы. Высокая надежность и долговечность приборов может быть обеспечена строгим соблюдением правил эксплуатации, изложенных в справочниках. Прежде всего нельзя допускать превышения предельных значений тока, напряжения и мощности, а также температуры, давления и влажности окружающей среды, уровня ударных, вибрационных и других механических воздействий. Нельзя эксплуатировать приборы в ...

6. Раздельное выравнивание частотной характеристики блока коррекции RIAA

В звукоснимателях с подвижной магнитной катушкой достаточно часто для образования резонансного эквалайзера используется емкостная составляющая нагрузки совместно с самоиндукцией генератора. Эквалайзер корректирует падающую механическую чувствительность звукоснимателя. В этом случае величина емкостной нагрузки становится критичной, но она может быть откорректирована очень быстро и просто введением в схему сдвоенного переменного воздушного конденсатора, имеющего емкость примерно 300 пФ, и извлеченного во время разборки из средневолнового (возможно, даже лампового) радиоприемника (рис. 8.17). Рис. 8.17 Нагрузка звукоснимателя и RC цепь с постоянной времени 75 мкс Основной причиной, побудившей выбрать д...

7. Активные кроссоверы и схема Зобеля

Если использовать несколько пар параллельно включенных выходных ламп в двухтактном оконечном каскаде, то можно получить высокую выходную мощность, при напряжении высоковольтного источника на достаточно безопасном уровне (по сравнению с высоковольтным питанием, требующимся мощным генераторным лампам), например, 320 В в случае использования нескольких пар ламп EL84. С использованием каждой дополнительной пары ламп импеданс первичной обмотки трансформатора будет меньше: если параметры ламп тщательно подобраны, то общее выходное сопротивление уменьшается во ...

8. Рабочий режим триода - Основные типы приемно-усилительных триодов

Многие триоды применяются в усилителях низкой частоты, в генераторах, а также в усилителях радиочастоты, в которых устраненно вредное влияние проходной емкости (например, по схеме с общей сеткой). Широко применяются двойные триоды. Особую группу представляют так называемые проходные триоды для работы в электронных стаби...

9. Разработка усилителей мощностью более 10 Вт

Применение мощных генераторных ламп имеет свои сложности: • передающие мощные лампы имеют всегда непропорционально высокую стоимость; • для них необходимы очень высокие анодные напряжения, следовательно, конденсаторы сглаживающего фильтра будут тоже очень дороги, а высоковольтный источник питания будет представлять повышенную опасность; • эквивалентные выходные сопротивления генераторных ламп, как правило, очень большие, что серьезно усложняет проблему создания выходного трансформатора с хорошими характеристиками; • применение мощных генераторных ламп требует довольно большой мощности возбуждения на их управляющих сетках, и для задания рабочего режима часто необходимо использовать дополнительную мощную лампу, создава...

10. Специальные электронные приборы для СВЧ - Лампы бегущей и обратной волны

В генераторных ЛОВ сантиметрового диапазона изменение частоты при перестройке составляет единицы мегагерц на один вольт ускоряющего напряжения. Выходная мощность генераторных ЛОВ бывает от десятков милливатт до единиц ватт, а КПД — несколько процентов. Ускоряющее напряжение — сотни или тысячи вольт, а ток пучка — от единиц до десятков миллиампер. Разновидность генераторных ЛОВ — так называемые резонансные ЛОВ, в которых отсутствует поглотитель, а замедляющая система замкнута накоротко около коллектора и поэтому становится резонатором. В таких ЛОВ возможна не только электронная, но и механическая перестройка частоты. Резонансные ЛОВ обладают более в...

11. Принцип устройства и работы электро-вакуумных приборов - Общие сведения, классификация

Особую группу ЭВП составляют электронные лампы, предназначенные для различных преобразований электрических величин. Эти лампы бывают генераторными, усилительными, выпрямительными, частотно-преобразовательными, детекторными, измерительными и др. Большинство их рассчитано на работу в непрерывном режиме. Выпускаются лампы и для импульсного режима. В них протекают кратковременные токи — электрические импульсы. В зависимости от рабочих частот электронные лампы подразделяются на низко-, высоко- и сверхвысокочастотные. Электронные ла...

12. Рабочий режим триода - Генератор с триодом

Генератор с триодом Схема простейшего триодного генератора синусоидальных колебаний с индуктивной обратной связью изображена на рис. 18.15. Подобный генератор является усилителем собственных колебаний, возникающих в колебательном контуре. При включении анодного источника в контуре LC возникают свободные колебания. Через катушку обратной связи L1 переменное напряжение от контура подводится к сетке и усиливается лампой. Усиленное напряжение создается на контуре LC и поддерживает возникшие там колебания, если обратная связь ...

13. Специальные электронные приборы для СВЧ - Пролетный клистрон

Однако пролетные клистроны сравнительно редко используются в качестве генераторов с самовозбуждением. А для маломощных генераторов (гетеродинов) более удобны отражательные клистроны, имеющие только один резонатор. ...

14. Принцип устройства и работы электро-вакуумных приборов - Термоэлектронные катоды

Его широко используют в приемно-усилительных и генераторных лампах малой и средней мощности, в электронно-лучевых трубках, в лампах для импульсной работы и многих других приборах. Рис. 15.6. Зависимость эмиссии оксидного катода от длительности импульса анодного тока В импульсном режиме эмиссия оксидного катода может быть во много раз сильнее, нежели в режиме непрерывной работы. Она происходит под действием сильного внешнего электрического поля, т. е. представляет собой сочетание электростатической эмиссии с термоэлектронной. Однако с т...

15. Измерение и интерпретация искажений

Также возможны биения между частотой питающей сети и частотой измерительного генератора. Следовательно, необходимо увеличивать поверочную частоту для того, чтобы устранить помехи от частоты сети электроснабжения и ее гармоник. Как уже говорилось выше, не следует использовать и высокие частоты, иначе высшие гармоники, уровень которых как раз и характеризует искомые н...

16. Выбор электронной лампы по критерию низких искажений

Более позднее поколение ламп, например, ЕСС82 (также предназначенных для использования в генераторах кадровой развертки телевизоров) извлекло пользу из улучшенной технологии производства и искажения крайне унифицированы от экземпляра к экземпляру: они единообразно плохие. Проблема карбонирования баллонов ламп Еще Декет (Deketh) подчеркивал, чт...

17. Общие проблемы устойчивости усилителей

Однако, нельзя забывать, что на практике любой усилитель всегда потенциально может стать автогенератором. ...

18. Практические методы настройки блока частотной коррекции RIAA

С другой стороны, требование постоянства уровня выходного сигнала требует, чтобы генератор мог обеспечивать точный уровень сигнала в пределах изменения на 45 дБ, который при этом мог бы измеряться с достаточной точностью. В зависимости от типа используемого измерительного оборудования возникает проблема преобразования между областями аналогового и цифрового сигналов, либо проблема аналогового аттенюатора. В любом сл...

19. Многоэлектродные и специальные лампы - Устройство и работа тетрода

10) Прибор с отрицательным сопротивлением может работать в качестве генератора. Динатронный эффект в тетроде вреден, так как из-за него создаются сильные искажения при усилении. Невыгодно и то, что ток экранирующей сетки больше полезного анодного тока. Может также возникнуть нежелательная паразитная генерация колебаний. Для исключения...

     >>>>>     0
!...................
20
!...................
40
!...................
60
!...................
80
!...................
100
!...................
120
!...................
 

 

 

Информация

 

Информация

Мгновенное значение переменного напряжения на дросселе выражается: в котором f представляет частоту второй гармоники напряжения питания сети. Реактивное сопротивление дросселя определяется выражением: Если теперь воспользоваться законом Ома, то мгновенное значение тока, протекающего через дроссель, составит: Так как представляет интерес максимальное значение тока, то член cos(2πft), входящий в выражение для мгновенного значения тока, будет иметь максимальное значение, равное единице, поэтому выражение может быть несколько упрощено: Ранее было высказано утверждение, что основной вклад в переменную составляющую дает вторая гармоника, однако это утверждение требует уточнения. Если вернуться к разложению
двухполупериодн-
ой
последовательно-
сти в ряде Фурье, то видно, что вклад четвертой гармоники составляет 20% относительно напряжения второй гармоники (0,12/0,6). Так как с увеличением частоты индуктивное сопротивление дросселя (для четвертой гармоники) возрастет вдвое, то величина тока на четвертой гармоники в дросселе снизится в два раза. Таким образом, доля тока четвертой гармоники относительно величины тока второй гармоники составит только 10%. Поэтому использованное допущение оказывается вполне справедливым, и к тому же оставляет место для дальнейшего улучшения характеристик. Сумма переменных токов, определяемых каждым из пяти первых членов разложения Фурье, включая составляющую восьмой гармоники, была
проанализирован-
а графически с использованием компьютера с целью определить наибольший положительный пик. Отрицательные пики не представляют значения, так как при сложении с постоянной составляющей они только снижают максимальное значение тока дросселя. Результаты графического исследования позволили изменить вид уравнения и свести его к следующему: Однако, общий максимальный ток itotal peak сиrrent протекающий через дроссель, складывается из максимального значения переменной составляющей тока IAC(peak) и постоянной составляющей тока IDC, протекающего в нагрузке: В качестве примера можно рассмотреть усилитель мощности класса А, в котором используется пара ламп-кенотронов типа 845 для схемы двухтактного выпрямления, и в котором используется не отфильтрованное высоковольтное напряжение 1100 В при величине тока 218 мА. В схеме выпрямителя усилителя используется дроссель с индуктивностью 10 Гн и номинальным током 350 мА, но можно ли считать такой вариант оптимальным? Трансформатор, питающий входной дроссель фильтра, имеет выходное напряжение υm(RMS) = 1224 В. Используя ранее приведенные выражения и считая, что частота сетевого напряжения питания составляет 50 Гц, получим следующие данные: Так как общий максимальный ток составляет 324 мА, то номинальное значение тока для дросселя, равное 350 мА, оказывается вполне достаточным. Однако приведенный пример демонстрирует, ч

 
 
Сайт создан в системе uCoz