Содержание

 

 
 

Неидеальности трансформаторов

1. Влияние провода звукоснимателя и сопротивления по постоянной составляющей подвижной катушки его головки

Влияние провода звукоснимателя и сопротивления по постоянной составляющей подвижной катушки его головки Хотя данный факт, как правило, игнорируется, сопротивление проводов тонарма звукоснимателя может оказаться чрезвычайно важным параметром, особенно в тех случаях, когда подвижная катушка его головки обладает низким выходным сопротивлением согласуется с использованием трансформатора, так как переходная характеристика трансформатора в значительной мере определяется сопротивлением источника тока. Автор измерил величину сопротивления микропровода длиной 5 м, использующегося в тонарме его проигрывателя, и обнаружил, что погонное сопротивление составляет 0,45 Ом/м. Поэтому, для стандартного тонарма, имеющего...

2. Анализ работы блока частотной коррекции RIAA

По мнению автора, впервые применение такого хитроумного приема было осуществлено в бестрансформаторной схеме блока частотной коррекции RIAA MC Артуром Лоесчем (Arthur Loesch). Расчет схемы в использованием средств вычислительной техники Проблемы большого многообразия видов взаимного влияния могут быть разрешены с использованием средств вычислительной техники при выполнения динамического анализа (по переменной составляющей). Начать следует с расчета величин при обычных условиях (то есть в предположении, что взаимодействие отсутствует). Затем следует использовать компьютерный расчет для предсказания влияния эффекта взаимовлияния на частотную хара...

3. Трансформаторы - Общие сведения

Индуктивность рассеяния зависит от размеров (q), квадрата отношения количества витков в обмотках (N2), геометрического параметра (k) трансформатора, но совершенно не зависит от магнитной проницаемости сердечника μr: Из приведенного выражения следует, что при условии работы на конкретной частоте трансформатор, рассчитанный на более высокую мощность, будет иметь более высокое значение индуктивности рассеяния, поскольку он будет иметь более крупные размеры по сравнению с трансформатором, рассчитанным на меньшее значение мощности. Так как индуктивность рассеяния пропорциональна значению N 2, при разработке трансформатора всегда необходимо стремиться получить параметр, характеризую...

4. Фазоинверсный каскад

Все рассмотренные ранее особенности использования трансформаторов применимы без каких-либо ограничений, однако, данный метод не получил широкого распространения, несмотря даже на то, что баланс между сигналами почти идеальный при всех режимах. Связано это прежде всего с недостатками трансформаторов и трудоемкостью их изготовления; • в качестве фазоинвертора используется специальное инвертирующее устройство (например, инвертирующий каскад). В качестве выходных сигналов, берутся сигналы с входа и выхода инвертирующего устройства (р...

5. Разработка усилителей мощностью более 10 Вт

Применение мощных генераторных ламп имеет свои сложности: • передающие мощные лампы имеют всегда непропорционально высокую стоимость; • для них необходимы очень высокие анодные напряжения, следовательно, конденсаторы сглаживающего фильтра будут тоже очень дороги, а высоковольтный источник питания будет представлять повышенную опасность; • эквивалентные выходные сопротивления генераторных ламп, как правило, очень большие, что серьезно усложняет проблему создания выходного трансформатора с хорошими характеристиками; • применение мощных генераторных ламп требует довольно большой мощности возбуждения на их управляющих сетках, и для задания рабочего режима часто необходимо использовать дополнительную мощную лампу, создавая добавочный предусилительный каскад. К счастью существуют некоторые способы преодоле...

6. Номинальное значение тока дросселя

Однако так как при определении номинальных параметров трансформатора предполагается, что ток имеет синусоидальную форму и имеется чисто резистивная нагрузка, то значения номинальных токов следует учитывать как среднеквадратические значения синусоидального сигнала, то есть максимальные (или пиковые, амплитудные) значения токов могут превышать эти значения в 12 раз. Поэтому для рассмотренного в качестве последнего примера случая понадобился бы трансформатор с номинальным среднеквадратическим значением синусоидального тока, равным 229 мА (что составляет...

7. Полупроводниковые приемники неизменяющегося тока для дифференциальной пары

По этой причине изготовители трансформаторов обычно используют более толстый провод, с допускаемым током 10 мА, и увеличение общей нагрузки трансформатора при использовании этой обмотки для питания дополнительных устройств обычно незначительно. Каскодная схема приемника неизменяющегося тока имеет более высокое выходное сопротивление, чем приемник неизменяющегося тока с одним...

8. Требования к каскаду предоконечного усиления

Полученный результат очень важен, так как его можно использовать для расчета выходного сопротивления усилителя. Выходной трансформатор согласует нагрузку громкоговорителя, равную 4 Ом, с сопротивлением 2 кОм, которое определяется выходной лампой, а это означает, что значения импедансов обмоток относятся как 500:1. С другой стороны, величина сопротивления rа лампы, поделенная на это отношение, дает значение выходного сопротивления 0,8 Ом. Таким образом, чтобы громкоговоритель работал в режиме, который задавался его разработчиками, необходимо было бы иметь меньшее выходное сопротивление,...

9. Выходной каскад по ультралинейной схеме

Однако, если представить себе первичную обмотку выходного трансформатора как обмотку с набором отводов, причем отвод от ее витков может быть сделан на любом витке, то можно достичь схемы включения промежуточ...

10. Ламповый стабилизатор напряжения

Особое внимание было уделено стабилизации напряжений питания подогревателей катодов, особенно защите от нестабильности напряжения сетевого питания с использованием цепей управления, в которых применяются индуктивные катушки с насыщением, включенные последовательно с сетевой обмоткой накального трансформатора. Характеристики любого стабилизатора напряжения могут быть улучшены за счет увеличения коэффициента усиления используемого в схеме усилителя рассогласования. Наименьшим коэффициентом усиления характеризуется схема на одиночном триоде, однако, схема на пентоде (или каскоде) имеет более высокое усиление. В случаях, когда требуется еще более высокое значение коэффициента усиления, может использоваться последовательное включение пары усилительных каскадов (использование более, чем двух каскадов усиления нецелесообразно с практической точки зрения, так...

11. Коэффициент режекции источника питания применительно к отдельным каскадам и устойчивость схемы

В особо изощренных методах могут быть даже использованы индивидуальные силовые трансформаторы и источники питания для каждого каскада, с целью увеличить коэффициент реакции с общим источником питания до значения, характерного для сетей питания (точка с общим питанием), тогда как использование выделенной...

12. Одиночный накопительный конденсатор в роли сглаживающего элемента

6 Источник питания, в котором используется накопительный конденсатор При условии отсутствия тока в нагрузке (при холостом ходе) конденсатор зарядится до напряжения, равного полному амплитудному значению переменного напряжения, имеющегося на выходных клеммах вторичной обмотки трансформатора, то есть значения (Vsec * √2) Величина заряда на конденсаторе в течение каждого периода изменения напряжения будет пропорциональна...

13. Выходной каскад класса А с несимметричным выходом

Типовой выходной каскад усиления мощности с трансформаторной связью с нагрузкой представляет собой хорошо известный триодный усилитель, в котором использована схема включения лампы с общим катодом, а смещение задается на катоде резистором автосмещения (рис. 7.1). Рис. 7.1 Выходной каскад с несимметричным выходом При анализе усилителя напряжения уже использовался метод нагрузочной (динамической) прямой для выбора значения анодной нагрузки, причем внимание обращалось на оптимизацию параметров с точ...

14. Почему необходимо использовать трансформаторы

Выходной трансформатор используется для согласования низкоомного громкоговорителя с высоким сопротивлением ламп выходного каскада усилителя, обеспечивая, таким образом, передачу максимальной мощности от усилителя в громкоговорители. Если в трансформаторе изготавливается многосекционные вторичные обмотки, то это представляет пользователю дополнительные возможности производить согласование с различными по величинам нагрузками (сопротивлениями громкоговорителей), не про...

15. Технические требования к линейному каскаду и способы их реализации

Для того, чтобы избежать наводок от силового трансформатора и последующего их усиления усилителем мощности, следует пространственно разнести блоки, например, на расстояние в один метр. При этом осуществляется физическое кабельное соединение между блоком предусилителя и входными зажимами усилителя мощности, для чего понадобится кабель длиной примерно в 1,5 м, что будет соответ...

     >>>>>     0
!...................
20
!...................
40
!...................
60
!...................
80
!...................
100
!...................
120
!...................
 

 

 

Информация

 

Информация

Впервые лампы такого типа были разработаны в СССР группой инженеров под руководством Н. Д. Девяткова. Примером таких ламп может служить
металлостеклянн-
ый триод (рис. 24.10, а). В нем один из выводов подогревателя сделан общим с кольцевым выводом катода. Такой триод работает в генераторах на частотах до 3600 МГц и дает полезную мощность не менее 0,1 Вт. Конструкцию, аналогичную изображенной, имеют некоторые диоды. Оригинальное устройство имеет «карандашный» триод (рис. 24.10,б), предназначенный для генерации колебаний мощностью до 5 Вт на частотах до 3000 МГц. Это металлическая лампа с цилиндрическими выводами анода и катода и дисковым выводом сетки. Выпущены также и другие «карандашные» диоды и триоды. Значительный интерес представляет также
сверхминиатюрны-
й триод с цилиндрическими выводами (рис. 24.10, в). Он предназначен для усилительных каскадов по схеме с общей сеткой, служащих входными каскадами в приемниках СВЧ. Такая лампа относится к
металлокерамиче-
ским
приемно-усилите-
льным лампам, для которых в качестве последнего элемента обозначения принята буква К. На предельной частоте 3000 МГц этот триод дает усиление мощности в 12 раз, а на частоте 1200 МГц — в 40 раз. Рис. 24.10. Триоды для СВЧ: а —
металлостеклянн-
ый; б — «карандашный»; в —
сверхминиа-тюрн-
ый
металлокерамиче-
ский 1 — вывод анода; 2 — вывод сетки; 3 — вывод катода и подогревателя; 4 — вывод подогревателя Некоторые лампы
металлокерамиче-
ской серии работают на частотах до 10000 МГц. В дециметровом диапазоне волн могут также работать
сверхминиатюрны-
е
металлокерамиче-
ские лампы (нувисторы). Для более мощных генераторов и передатчиков, в частности для передатчиков, работающих с большой мощностью в импульсном режиме, применяются
металлокерамиче-
ские генераторные триоды, напоминающие по конструкции рассмотренные
приемно-усилите-
льные лампы и также предназначенные для соединения с коаксиальными колебательными системами. На рис. 24.11 показан внешний вид
металлокерамиче-
ской генераторной лампы и ее устройство. Рабочие поверхности катода, сетки и анода этой лампы имеют форму дисков, расположенных очень близко друг к другу. Иногда пове

 
 
Сайт создан в системе uCoz