Содержание

 

 
 

Стабилитроны

1. Источники питания низкого напряжения и синфазный шум

36 Принципиальная схема высоковольтного стабилизатора (приводится с любезного разрешения компании National Semiconductors) Случайное закорачивание стабилизатора напряжения подобного типа измерительным щупом осциллографа привело к жуткому хлопку и выходу из строя полупроводникового прибора. Автор испытал это на собственном опыте. Нижнее плечо делителя напряжения зашунтировано, однако, последовательно с шунтирующим конденсатором включен резистор для улучшения переходных характеристик в области нижних частот за счет подъема нижней частоты f-3дБ ступенчатого эквалайзера. Также в схему был добавлен диод,...

2. Совершенствование измерений нелинейных гармонических искажений

Таким образом, все практические измерения нелинейных искажений, выполненные измерительным прибором, на самом деле измеряют СКГ + Ш (суммарный коэффициент гармоник + шум), и всегда нужно удостовериться, что интенсивность шумов недостаточно большая, чтобы им можно было пренебречь. Только в этом случае измерения будут корректными. Большинство шумов им...

3. Газоразрядные и индикаторные приборы - Электрический разряд в газах

Коронный разряд является самостоятельным и используется в газоразрядных приборах для стабилизации напряжения. Он наблюдается при сравнительно больших давлениях газа в тех случаях, когда хотя бы один из электродов имеет очень малый радиус (острие, заостренный край, тонкая проволочка и др.). Тогда поле между электродами получается неодноро...

4. Постоянная токовая нагрузка первого дифференциального каскада. Температурная стабилизация

При этом основным допущением является, что температура диода точно соответствует температуре перехода полупроводникового прибора, который вносит ошибку, поэтому компенсирующий прибор должен быть закреплен на основном приборе, например, с помощью эпоксидного клея, а сам он изолирован от конвекционных потоков экраном из пенополистирола. Действительно, в паспортных данных приводится схема компенсации температурного дрейфа, в которой просто требуется, чтобы сопротивление дополнительного резистора в десять раз превышало номинал задающего (рис. 7.44). Рис. 7.44 Температурная компенсация полупроводникового прибора типа 334Z Рассмотрев компенсацию температурной зависимости параметров полупроводниковой с...

5. Модели трансформаторов

Достаточно часто применяемый на практике цифровой комбинированный измерительный прибор (мультиметр), по утверждениям их изготовителей, в состоянии довольно точно выполнить подобную операцию, однако использование измерительного моста для измерения емкости конденсатора даст во всех случаях гораздо более лучший результат. ...

6. Измерение и интерпретация искажений

Однако, на этих частотах в исследуемый усилитель поступает множество помех через питающую электросеть, что вызовет ложные показания измерительных приборов. Также возможны биения между частотой питающей сети и частотой измерительного генератора. Следовательно, необходимо увеличивать поверочную частоту для того, чтобы устранить помехи от частоты сети электроснабжения и ее гармоник. Как уже говорилось выше, не следует использовать и высокие частоты, иначе высшие гармоники, уровень которых как раз и характеризует искомые нелинейные искажения, попадут на область спада амплитудно-частотной характеристики усилителя, что даст заведомо ложный излишне хороший результат измерения. Нек...

7. Электронно-лучевые трубки - Краткие сведения о различных электронно-лучевых трубках

Они используются в качестве единого оконечного индикаторного прибора для группы радиолокационных и гидроакустических станций (РЛС и ГАС), установленных, например, на морских судах. Наибольшее распространение получил характрон. На рис. 20.27 показана система, в которую входит характрон. Несколько РЛС и ГАС подключены к электронно-вычислительной машине (ЭВМ), которая обрабатывает получаемые сигналы с информацией о тех или иных объектах. От ЭВМ сигналы поступают в специальное устройство управления характроном. Различн...

8. «Потомок от усилителя Beast» для прослушивания компакт-диска на электростатические телефоны

Выбор рабочей точки ламп типа 12SN7GTA критичен с точки зрения получения максимального выходного напряжения, поэтому в этом каскаде была применена своеобразная лампово — полупроводниковая схема задания неизменяющегося тока, когда биполярный пленарный транзистор совместно с пентодом образуют гибридный каскод, в котором катодный ток дифференциальной пары Ik определяется практически только параметрами полупроводникового прибора, что позволяет производить замену лампы без необходимости дополнительной подстройки этого тока. Рис. 7.48 «Потомо...

9. Особенности источников смещения подогревателей ламп, находящихся под повышенным потенциалом относительно корпуса

Переключение источников питания из режима пониженного энергопотребления в стандартный режим энергоснабжения осуществляется подключением к земле нижнего плеча катушки каждого реле (хотя многие переключающее реле являются в действительности полупроводниковыми приборами, которые не имеют катушек). Это означает, что несглаженное низковольтное напряжение не поступает в составной кабель, который соед...

10. Надежность и испытание электровакуумных приборов

Строгое и неуклонное соблюдение всех указанных выше и приводимых в справочниках правил эксплуатации электровакуумных приборов является необходимым условием для того, чтобы они работали с высокой надежностью и долговечностью. При нарушении нормальной работы РЭА поиски неисправност...

11. Специальные электронные приборы для СВЧ - Лампы бегущей и обратной волны

Поэтому были разработаны приборы, сочетающие в себе достоинства магнетронов и ламп бегущей или обратной волны. Широкое применение получили ЛБВ и ЛОВ М-типа (ЛБВМ и ЛОВМ). На рис. 25.18 изображена схематически ЛБВМ плоской конструкции. Электроны, эмитированные накаленным катодом К, попадают в постоянное электрическое поле напряженностью Еу, созданное напряжением управляющего электрода УЭ, и в постоянное магнитное поле с индукцией В, созданное внешней магнитной системой, не показанной на чертеже. П...

12. Электронная лампа, радиолампа. Физика и схемотехника

Применение диода для выпрямления переменного тока Основные типы Трехэлектродные лампы Физические процессы Токораспределение Действующее напряжение и закон степени трех вторых Характеристики Параметры Рабочий режим триода Особенности Усилительный каскад с триодом Параметры усилительного каскада Аналитический расчет и эквивалентные схемы усилительного каскада Графоаналитический расчет режима усиления Генератор с триодом Межэлектродные емкости Каскады с общей сеткой и общим анодом Недостатки триодов Основные типы приемно-усилительных триодов Многоэлектродные и специальные лампы Устройство и работа тетрода Устройство и работа пентода Схемы включения тетродов и пентодов Характеристики тетродов и пентодов Параметры тетродов и пентодов Межэлектродные емкости тетродов и пентодов Устройство и работа лучевого тетрода Характеристики и параметры лучевого тетрода Рабочий режим тетродов и пентодов Пентоды переменной крутизны Краткие сведения о различных типах тетродов и пентодов Специальные лампы Электронно-лучевые трубки Общие сведения Электростатические электронно-лучевые трубки Магнитные электронно-лучевые трубки Люминесцентный экран Краткие сведения о различных электронно-лучевых трубках Газоразрядные и индикаторные приборы Электрический разряд в газах Тлеющий разряд Стабилитроны Тиратроны тлеющего разряда Индикаторные приборы Дисплеи Краткие сведения о различных газоразрядных приборах Фотоэлектронные приборы Фотоэлектронная эмиссия Электровакуумные фотоэлементы Фотоэлектронные умножители Собственные шумы электронных ламп Причины собственных шумов Шумовые параметры Особенности работы электронных ламп на СВЧ Межэлектродные емкости и индуктивности выводов Инерция электронов Наведенные токи в цепях электродов Входное сопротивление и потери энергии Импульсный режим Основные типы электронных ламп для СВЧ Специальные электронные приборы для СВЧ Общие сведения Пролетный клистрон Отражательный клистрон Магнетрон Лампы бегущей и обратной волны Амплитрон и карматрон Надежность и испытание электровакуумных приборов Надежность и испытание электровакуумных приборов Основы схемотехники ламповых усилителей Усилитель на триоде с общим катодом Ограничения по выбору рабочей точки Режим в рабочей точке Катодное смещение Выбор велич...

13. Особенности работы электронных ламп на СВЧ - Инерция электронов

Лампа перестает быть малоинерционным прибором. Принято говорить, что на СВЧ проявляется инерция электронов. Инерция электронных процессов в лампе создает вредные фазовые сдвиги, искажает форму импульсов анодного тока и служит причиной возникновения значительных сеточных токов. В результате резко снижается входное сопротивление лампы, увеличиваются потери мощности, а следовательно, уменьшается полезная мощность. Инерция электронов не влияет на работу лампы, на частотах, соответствующих диапазонам метровых и более длинных волн. Действит...

14. Специальные электронные приборы для СВЧ - Магнетрон

Магнетрон Магнетроны представляют собой важнейшие электронные приборы для генерации колебаний СВЧ большой мощности. Они применяются в передатчиках радиолокационных станций, в ускорителях заряженных частиц, для высокочастотного нагрева и в других случаях. В результате совместного действия электрического и магнитного полей на потоки электронов в магнетронах возникает генерация колебаний высокой частоты. В настоящее время широкое распространение получили многорезо...

15. Газоразрядные и индикаторные приборы - Краткие сведения о различных газоразрядных приборах

Все эти газоразрядные приборы весьма инерционны и поэтому непригодны для высоких частот, так как процесс рекомбинации после выключения (запирания) прибора требует значительного времени. Приборы с инертными газами могут работать на частотах в десятки килогерц, а приборы с ртутными парами — на гораздо более низких частотах. ...

16. Принцип устройства и работы электро-вакуумных приборов - Термоэлектронные катоды

Его широко используют в приемно-усилительных и генераторных лампах малой и средней мощности, в электронно-лучевых трубках, в лампах для импульсной работы и многих других приборах. Рис. 15.6. Зависимость эмиссии оксидного катода от длительности импульса анодного тока В импульсном режиме эмиссия оксидного...

17. Многоэлектродные и специальные лампы - Устройство и работа тетрода

В этом режиме внутреннее сопротивление тетрода отрицательно, так как положительному приращению Δuа соответствует отрицательное приращение Δiа: Ri = Δuа / Δiа < 0. (19.10) Прибор с отрицательным сопротивлением может работать в качестве генератора. Динатронный эффект в тетроде вреден, так как из-за него создаются сильные искажения при усилении. Невыгодно и то, что ток экранирующей сетки больше полезного анодного тока. Может также возникнуть нежелательная паразитная генерация колебаний. Для исключения динатронного эффекта постоянное напряжение экранирующей сетки всегда должно быть меньше анодного напряжения. ...

     >>>>>     0
!...................
20
!...................
40
!...................
60
!...................
80
!...................
100
!...................
120
!...................
 

 

 

Информация

 

Информация

Генератор с триодом Схема простейшего триодного генератора синусоидальных колебаний с индуктивной обратной связью изображена на рис. 18.15. Подобный генератор является усилителем собственных колебаний, возникающих в колебательном контуре. При включении анодного источника в контуре LC возникают свободные колебания. Через катушку обратной связи L1 переменное напряжение от контура подводится к сетке и усиливается лампой. Усиленное напряжение создается на контуре LC и поддерживает возникшие там колебания, если обратная связь положительная. Для того чтобы колебания стали незатухающими, т. е. для
самовозбуждения-
, должны быть выполнены два условия. Во-первых, катушка обратной связи должна быть включена так, чтобы переменные напряжения на аноде и на сетке были сдвинуты по фазе на 180°. А во-вторых, коэффициент обратной связи Kос, равный отношению переменных напряжений на сетке и на контуре, должен быть не меньше обратного значения коэффициента усиления каскада K: Kос ≥ 1/K. (18.52) Заменив здесь K по формуле (18.36), получим Kос ≥ (RH + Ri)/(μRН) = 1/μ + 1/(SRН), (18.53) где RH — сопротивление нагрузки (резонансное сопротивление контура). Чем больше K или чем больше μ, S и Ri, тем меньше может быть значение Kос, требуемое для
самовозбуждения-
. Элементы Rg и Сg служат для создания на сетке автоматического напряжения смещения за счет сеточного тока. Пока колебаний нет, сеточный ток отсутствует и смещение не возникает. А когда на сетку поступает переменное напряжение, то его положительные полуволны вызывают пульсирующий сеточный ток. Его постоянная составляющая создает на резисторе Rg падение напряжения, которое и является напряжением смещения. Конденсатор Сg сглаживает пульсации этого напряжения. Генератор с триодом Схема простейшего триодного генератора синусоидальных колебаний с индуктивной обратной связью изображена на рис. 18.15. Подобный генератор является усилителем собственных колебаний, возникающих в колебательном контуре. При включении анодного источника в контуре LC возникают свободные колебания. Через катушку обратной связи L1 переменное напряжение от контура подводится к сетке и усиливается лампой. Усиленное напряжение создается на контуре LC и поддерживает возникшие там колебания, если обратная связь положительная. Для того чтобы колебания стали незатухающими, т. е. для
самовозбуждения-
, должны быть выполнены два условия. Во-первых, катушка обратной связи должна быть включена так, чтобы переменные напряжения на аноде и на сетке были сдвинуты п

 
 
Сайт создан в системе uCoz