Содержание

 

 
 

Свойства реальных трансформаторов, в первую очередь низкочастотных, находящих широкое применение в ламповых усилителях звуковой частоты

1. Типы конденсаторов. Металлические конденсаторы с воздушным диэлектриком

Из-за этой зависимости потерь от частоты, которые начинают проявляться примерно в середине звукового диапазона и достигают максимума на нижней границе высокочастотного диапазона, конденсаторы, в которых используются полярные диэлектрики, не представляются идеальными для использования в звуковоспроизводящей аппаратуре. Напротив, потери неполярных диэлектриков не зависят от частоты почти до СВЧ диапазона. Практически все диэлектрики, у которых εr > 2,5, являются полярными (табл. 5.1). Таблица 5.1 ДиэлектрикИмяεrdПолярность ПолитетрафторэтиленPTFE, дефлон™2,10,0002север Полистирол 2,60,0002-0,0005север Полипропилен 2,20,0005север Поликарбонат...

2. Измерение и интерпретация искажений

Эту нелинейность можно считать одинаковой на всех звуковых частотах, поскольку у подавляющего большинства электронных ламп частотная зависимость их хар...

3. Принцип устройства и работы электро-вакуумных приборов - Термоэлектронные катоды

За счет микрофонного эффекта нередко возникает акустическая генерация. В этом случае звуковые волны от громкоговорителя вызывают механические колебания лампы и соответственно колебания анодного тока, которые после усиления попадают в громкоговоритель. Возникшие звуковые волны снова воздействуют на лампу. Происходит генерация незатухающих звуковых колебаний, заглушающих полезный сигнал. Широко применяются катоды косвенного накала (подогревные). Обычно такой катод представляет собой никелевый цилиндрик с оксидным поверхностным слоем. Внутрь вставлен вольфрамовый подогреватель (рис. 15.8). Для...

4. Улучшение шумовых характеристик при использовании блока частотной коррекции стандарта RIAA

• Использование ламп с максимальным значением крутизны gm или параллельное включение нескольких ламп существенно увеличивает входную емкость входного каскада и, как правило, препятствует использованию повышающего трансформатора для звукоснимателей с подвижной катушкой. • Избыточный токовый шум преобладает в пленочных резисторах, работающих в цепях постоянного тока. Для проволочных и фольговых резисторов избыточный токовый шум не характерен. • Очень большое значение емкости конденсатора связи (превышающее, как правило, в 100 раз типо...

5. Расчет переключаемого аттенюатора

Расчет переключаемого аттенюатора Исходя из того, что в наличии имеются переключатели, на основе которых можно изготовить переключаемы аттенюаторы, необходимо будет рассчитать значения сопротивлений резисторов, используемых в таких регуляторах громкости звука. Эти расчеты можно произвести вручную, но использование для этих целей компьютера значительно облегчает задачу. Существует три основны...

6. Выбор элементов оконечного каскада

Более поздняя версия усилителя использовалась в основной звуковоспроизводящей системе автора для небольших ВЧ динамиков. Во всех усилителях, за исключением исходного прототипа, использовались выходные трансформаторы от усилителей Leak Stereo 20 или TL12+ , а в третьей и последующих версиях усилителей использовались также силовые трансформаторы и шасси, однако следует отметить, что автор широко экспериментировал с различными типами комплектующих: • вторая модификация усилителя: оказалась идеальной для громкоговорителей типа LS3/5a, которые воспроизводили традиционный для лампового усилителя «мягкий» звук. Использовались металлизирова...

7. Особенности проектирования усилителей с малыми искажениями

Это обстоятельство крайне полезно, если необходимо оценить искажения триода, при работе со слабыми сигналами — например, как в случае каскада с частотной коррекцией Американской Ассоциации звукозаписи (RIAA), используемый для согласования усилителя с проигрывателем виниловых грампластинок. Рис. 4.6 Схема проверки линейности μ-повторителя Рис. 4.7 График искажений в зависимости от уровня...

8. Типы конденсаторов. Пленочные конденсаторы, изготовленные металлизацией диэлектрика

Слюдяные посеребренные конденсаторы Слюдяные посеребренные конденсаторы, имеющие небольшие значения емкости, традиционно использовались в ВЧ цепях, а также фильтрах звукового частотного диапазона, где необходима особенно высокая стабильность характеристик. Слюда представляет кри...

9. Оптимизация характеристик входного трансформатора

Таблица 8.8 Сопротивление звукоснимателя Постоянному току RDC, Ом46810 Значение емкости Зобеля1,5 нФ1нФ910 пФ680 пФ В качестве приемлемого варианта может быть использован трансформатор типа JT-346-AX, производимый компанией Дженсен (Jensen), но это будет достаточно дорогая плата за улучшение ...

10. Катодное смещение

Помня, что реактивное сопротивление конденсатора возрастает при уменьшении частоты, становится очевидным, что минимально необходимое реактивное сопротивление этого конденсатора нужно обеспечить на минимальной частоте полезного сигнала. В звукозаписывающей и звуковоспроизводящей аппаратуре высокого класса качества, обычно нижняя граница диапазона эффективно воспроизводимых частот составляет 20 Гц (хотя, например, 32-футовый орган производит и более низкие частоты — вплоть до 16 Гц) — современные цифровые источники звуковых сигналов, безусловно, способны выдавать эти частоты, а большие громкоговорители могут их воспроизвести. Таким образом, необходимо обеспечить относительно малое сопротивление катодного блокировочного конденсатора на частоте 20 Гц, так как в...

11. Практические методы настройки блока частотной коррекции RIAA

К сожалению, тщательно оптимизированная практическая нагрузка, необходимая для звукоснимателя с подвижной катушкой или трансформатора такого звукоснимателя, нарушает импеданс нагрузки, из-за чего неверный учет значения сопротивления генератора внесет дополнительные проблемы. Если коротко подытожить сказанное, то обеспечение уровня ошибки при практических измерениях параметров блока частотной коррекции RIA...

12. Метод частотной коррекции стандарта RIAA

Хотя такое снижение и может достаточно точно компенсироваться за точкой схемы, соответствующей точке введения обратной связи усилителя, в действительности это означает, что характеристика перед компенсацией возрастает, что вызывает опасность роста искажений и увеличенного запаса в ультразвуковой области. Таблица 8.5 Частота, ГцКоэффициент передачи, дБотносительно уровня 1 кГцФаза, градусы 019,91101019,743-10,4 2019,274-2050,6516,94140,6 7015,283-48,410013,088-54,8 2008,219-59,6500,52,6443-52,6 7001,234-49,710000-49 2000-2,589-55,92122-2,866-56,9 5000-8,210-72,17000-10,816-76,8 10 000-13,734-80,620 000-19,620-85,2 50 000-27,341-88,170 000-30,460-88,6 100 000-33,556-89200 000-39,575-89,5 Выравнивание частотных характеристик путем введения пассивных цепей Так как коэффициент передачи на частоте 1 кГц примерно на 20 дБ ниже максимального уровня в диапазоне нижних ч...

13. Принципы измерения нелинейных искажений

Рассмотренный метод измерения часто называется двухтоновым методом и наиболее распространен в радиочастотной технике. В технике звуковых частот часто ограничиваются лишь измерением уровней высших гармоник, поскольку их легче выделить при измерениях. Что же касательно радиочастотной аппаратуры, то там измерения упрощаются, вследствие возможности построения высокодобротных колебательных систем, использующихся для разделения составляющих а близкорасположенных частотах. В этом смысле значительно ...

14. Ограничения по выбору рабочей точки

Это уменьшает входное сопротивление электронной лампы, которое при отсутствии сеточного тока стремится к бесконечно большому (поскольку сопротивление входной емкости сетка-катод на звуковых частотах очень велико), и генератор с ненулевым выходным сопротивлением начинает нагружаться (то есть часть входного напряжения начинает падать на внутреннем сопротивлении его источника). При этом ослабляются положительные полуволны входного сигнала, что вызывает искажения вхо...

15. Низкочастотное самовозбуждение усилителя

Именно такой способ повышения устойчивости позволяет справиться с проблемой в верхней части диапазона нижних звуковых частот для схем, использующих стабилизированные источники питания, так как именно он устраняет ранее не определяемые НЧ автоколебания («звон»). Следует отметить, что данная проблема совсем не обязательно требует наличия петли межкаскадной обратной связи, чтобы дать себя проявить и что предусилители «с нулевой о...

16. Трансформаторы. Намагничивание и потери

Выходные трансформаторы, обратная связь и громкоговорители Как известно, большинство усилителей звуковой частоты охватываются отрицательной обратной связью, что позволяет уменьшить нелинейные искажения в них. Чаще всего, напряжение обратной связи снимается непосредственно с выходного трансфо...

17. Проблемы смещения по постоянному току

Традиционное решение — шунтировать катодный резистор конденсатором большой емкости, который является коротким замыканием на звуковых частотах. Тогда катод окажется соединен с общим проводом по переменному току и отрицательная обратная с...

18. Критерии выбора силового трансформатора и накопительного (сглаживающего) конденсатора

Это связано с тем, что выходной усилитель мощности, часто работающий в классе В (с отсечкой выходного тока ламп), вызывает появление выпрямленной составляющей звукового сигнала, а также его второй гармоники (то есть удвоенной звуковой частоты) на шинах источника питания. Для выполнения требований этого условия можно использовать электролитический конденсатор, предназначенный для применения в импульсных источниках питания в качестве накопительного конденсатора, зашунтировав его конденсатором меньшей емкости (рис. 6...

19. Классификация искажений. Принципы оценки линейных искажений

Если линейные искажения изменяют основном окраску звука, то проявление нелинейных искажений еще более пагубно, поскольку они приводят к существенным изменениям усиливаемого сигнала. Поскольку, нелинейные искажения проявляются в появлении в выходном сигнале новых спектральных составляющих, многие методики оценки этих искажений заключаются в оценки уровней этих составляющих. Также существуют методики измерений, основанные на оценке кривизны амплитудной характеристики усилителя. ...

20. Цифровая обработка сигналов

Таким образом, если использовать компьютерную звуковую карту для измерения нелинейных искажений, нужно подавлять все частоты аудиосигнала выше 20 кГц. Если же требуется точно воспроизвести сигналы, содержащие спектральные составляющие на более высоких частотах, требуется более высокая частота дискретизации. В тоже время, работаю с цифровыми осциллографами, применение подобных фильтров нежелате...

     >>>>>     0
!...................
20
!...................
40
!...................
60
!...................
80
!...................
100
!...................
120
!...................
 

 

 

Информация

 

Информация

Можно предположить для
рассматриваемог-
о примера, что величина резистора составит 2 кОм, тогда значение емкостного сопротивления составит: Хс = 2 кОм/2000 = 1 Ом. Так как частота напряжения пульсаций равна 100 Гц, то величину необходимой емкости конденсатора можно определить, используя следующее выражение: Рис. 6.23 Секционирование RC-фильтра оставляет общее значение емкости и сопротивления неизменным, но увеличивает окончательный коэффициент ослабления со значения 6 дБ/октаву до 24 дБ/октаву Проблема заключается в том, чтобы определить оптимальное количество секций фильтра. К счастью, Скроджи (Scroggie) [5] (в работе, написанной под названием « Катодный луч »), уже исследовал данную проблему и привел очень удобную таблицу: Таблица 6.4 Количество секций
фильтра2πf-
CR (Rtotal / XC)
ОслаблениеЗначе-
ние произведения сопротивления R (кОМ) на емкость С (мкФ) 100 Гц 120 Гц 1161625,5 21,2 245,613018,1 15,1 39099715,9 13,3 4149752014,8 12,4 522356 40014,2 11,8 6311420 00013,8 11,5 Примечание. Значения, приведенные в таблице, несколько отличаются от приведенных в оригинале, так как Скроджи не мог использовать широкоформатные таблицы, когда производил свои вычисления. Для того, чтобы понять, как пользоваться таблицами, следует обратиться к ранее
использовавшему-
ся примеру: пусть необходимо получить ослабление, превышающее значение 2000, поэтому следует определить строку с количеством секций, для которой в графе Ослабление будет ближайшее большее число. В примере количество секций п = 4. Если общее сопротивление должно составлять 2 кОм, то сопротивление каждой секции составит: 2 кОм/4 = 500 Ом. Для определения индивидуального необходимого значения емкости следует воспользоваться колонкой с частотой 100 Гц. Необходимое значение емкости получается, как частное отделения 14,8/0,5 = 29,6 (полученное значение выражено в микрофарадах). На практике, скорее всего, будут использованы резисторы с сопротивлением 470 Ом и конденсаторы с емкостью 33 мкФ. Самое основное преимущество многозвенного фильтра заключается не в том, что четыре конденсатора с емкостями 33 мкФ окажутся намного дешевле (и меньше по размерам), чем один конденсатор, имеющий емкость 1590 мкФ, а в том, что
секционированны-
й фильтр обеспечивает почти четырехкратное увеличение ослабления. С другой стороны, предположим, что имеется почти неограниченный запас конденсаторов с емкостью 22 мкФ и достаточное место для установки четырех таких конденсаторов, однако в
последовательны-
х плечах фильтра надо будет использовать резисторы с сопротивлением 2,5 кОм. Возникает следующий вопрос, какой способ будет являться наилучшим для самого рационального использования конденсаторов при ослаблении пульсаций с частотой 100 Гц? Параллельное включение четырех таких конденсат Можно предположить для
рассматриваемог-
о примера, что величина резистора составит 2 кОм, тогда значение емкостного сопротивления составит: Хс = 2 кОм/2000 = 1 Ом. Так как частота на

 
 
Сайт создан в системе uCoz