Содержание

 

 
 

Предусилительный каскад должен обладать очень низким выходным сопротивлением и обеспечивать высокие токи для возбуждения нагрузки без заметных искажений

1. Усилитель Williamson

Гафлер (Hafler) и Кероес (Keroes) решив, что разработанный ими выходной каскад мог бы с успехом питаться от предусилительного каскада усилителя Williamson, совершенно обдуманно преднамеренно увеличили в пять раз величину емкости конденсатора связи между «согласованным» фазоинвертором и предусилительным каскадом с 50 нФ до 0,25 мФ. Это было сделано с целью разделить низкочастотные постоянные времени т улучшить устойчивость на низких частотах. Исходя из собственного опыта автор считает, что если входной каскад и «согласованный» фазоинвертор питаются от общего источника высоковольтного напряжения, возможно возникновение самовозбуждение на низких частотах (рокот). Не следует забывать, что в 1947 г. расчеты цепей производились с исполь...

2. Переключаемые аттенюаторы

Так как в рассматриваемом случае проектируется предусилитель, предназначенный для согласования известного по своим характеристикам усилителя мощности, то есть с известным усилением, то поэтому можно ожидать перегрузки усилителя мощности только на нескольких последних ступенях регулировки громкости. С целью избежания перегрузки, следует подогнать, насколько это возможно, характеристики аттенюатора к характеристикам индив...

3. Топология схемы: источники питания и их влияние на элементы, задающие постоянную токовую нагрузку

Топология схемы: источники питания и их влияние на элементы, задающие постоянную токовую нагрузку Лампы семейства *SN7/*N7 вносят нелинейные искажения, в основном, на второй гармонике, влияние которой может быть нейтрализовано использованием в качестве предусилительного каскада дифференциального усилителя при условии, что при этом нет потерь по переменной составляющей полезного тока (сигнала) в общем резисторе дифференциальной пары. Рис. 7.41 Упрощенная принципиальная схема усилителя Следовательно,...

4. Оптимизация входного и фазоинверсного каскадов по постоянному току

33 Определение рабочих режимов входного/предусилительного каскада Идеальным был бы вариант, при котором удалось бы установить такой выходной ток усиливаемого сигнала во входном каскаде, чтобы он был бы равен и противоположен по знаку сигналу в согласованном фазовращателе, то есть чтобы выполнялось условие: По существу, приведенное соотношение просто выражает мысль, что сопротивление нагрузки согласованного фазоинвертора RL(согл.фаз.) деленное на коэффициент передачи фазоинвертора относительно одного выхода, обеспечивает, таким образом, равенство токов в резисторах нагрузок каждого каскада. Под...

5. Типы конденсаторов. Металлические конденсаторы с воздушным диэлектриком

Возможные варианты использования конденсаторов в цепях низкочастотного тракта: • переменный конденсатор с емкостью = 300 пФ включается параллельно входу картриджа с подвижной магнитной системой блока частотной коррекции RIAA, что позволяет оптимизировать нагрузку картриджа со стороны предусилительного каскада; • конденсаторы с емкостью = 50 пФ используются для настройки конденсаторов схемы эквалайзера до точных значений. В схемах ламповых коротковолновых радиоприемников часто использовалось множество подстрочных конденсаторов, и ...

6. Включение сглаживающих конденсаторов при повышенном высоком напряжении

Так как к схеме предусилителя всегда предъявляются более жесткие требования, необходимо рассмотрение начать со схемы источника питания, предназначенного для предусилительных каскадов. После этого можно будет просто использовать уже рассмотренные в деталях блоки для применения в других низкочастотных каскадах. Однако, прежде чем начать рассмотрение конкретных схем, необходимо разобраться с техническими требованиями к источникам питания и их разумному выбору. Выбор высоковольтного напряжения Хотя параметры источника питания должны задаваться таким образом, чтобы...

7. Практические методы настройки блока частотной коррекции RIAA

При увеличении значения емкости Саg на 50% ожидается снижение участка пологого спада частотной характеристики в ВЧ области на 0,32 дБ, тогда как при уменьшении ее значения на 50% ожидается подъем ее ВЧ участка пологого спада на 0,34 дБ. К счастью, предусилитель оказывается невосприимчив к изменениям значения емкости Саg в пределах ±50% при использовании лампы типа 12В4-А, так как последовательный резистор, выбранный из соображений минимальных искажений, приводит к низкому значению импеданса для па...

8. Выбор элементов оконечного каскада

Выбор элементов оконечного каскада После того, как определены значения всех элементов схемы предусилительного каскада, можно определить значения элементов выходного каскада. Лампа типа EL84 допускает (согласно ...

9. Составление предварительной схемы блока питания

Можно даже считать, что представленный вариант схемы является источником питания широкого назначения, от которого можно будет питать либо любую экспериментально собранную схему, либо же постоянно использовать его в качестве источника питания предусилительного блока. Рис. 6.42 Предварительная схема блока питания Таблица 6.5. Требования к параметрам источников питания Высоковольтный источник питания Постоянное напряжение: 300 В Максимальный ток: 100 мА Напряжение пульсаций: 1 мВ двойного амплитудного значения (или меньше) Низковольтные источники питания (два идентичных) Постоянное напряжение: 6,3 В Максимальный ток: 1,5 А Напряжение п...

10. Источники питания низкого напряжения и синфазный шум

Источники питания низкого напряжения и синфазный шум Классическая схема предусилительного каскада предусматривает использование источников переменного тока для цепей подогревателей катодов, что вызывает связанную с этим проблему фона переменного тока. В схемах современных предусилительных каскадов используются цепи питания накала ламп на постоянном токе, однако, в силу высоких значений токов (достигающих значения 1 — 2 А), которые к тому же очень трудно сгладить до приемлемого уровня пассивными методами, во всех схемах практически безоговорочно используются стабилизаторы ...

11. Разработка усилителей мощностью более 10 Вт

Применение мощных генераторных ламп имеет свои сложности: • передающие мощные лампы имеют всегда непропорционально высокую стоимость; • для них необходимы очень высокие анодные напряжения, следовательно, конденсаторы сглаживающего фильтра будут тоже очень дороги, а высоковольтный источник питания будет представлять повышенную опасность; • эквивалентные выходные сопротивления генераторных ламп, как правило, очень большие, что серьезно усложняет проблему создания выходного трансформатора с хорошими характеристиками; • применение мощных генераторных ламп требует довольно большой мощности возбуждения на их управляющих сетках, и для задания рабочего режима часто необходимо использовать дополнительную мощную лампу, создавая добавочный предусилительный каскад. К счастью существуют некоторые способы преодоления указанных проблем. Пиковая музыкальная мощность: распущенность и ложь производителе...

12. Коэффициент режекции источника питания применительно к отдельным каскадам и устойчивость схемы

Для усилителя мощности данный вид шума не представляет проблемы вообще, но для очень чувствительного предусилительного каскада он должен учитываться. Самый лучший способ справиться с ним в предусилительном каскаде — так это сделать предусилительный каскад не чувствительным к шуму источника питания. Такой подход предполагает низкое значение сопротивления rа и высокое значение сопротивления нагрузки RL, что позволяет получить максимальное осла...

13. Проволочные резисторы

В противоположность этому, влияние дефектов поверхностных слов (если их рассматривать относительно площади поперечного сечения проволоки, используемой в проволочных резисторах) будет составлять незначительную долю, поэтому влияние избыточных шумов можно считать несущественным, что позволяет с успехом использовать их в качестве идеальной анодной нагрузки в малошумящих предусилительных каскадах. Проволочные резисторы наматываются подобно катушке дросселя, и даж...

14. Линейный каскад

Если принять, что длина соединительного кабеля, на который нагружен предусилитель, составляет примерно 20 м, то при стандартном значении погонной емкости 100 пФ/м полная емкость такого отрезка кабеля составит 2 нФ. Еще более худшим случаем является вариант использования транзисторного усилителя мощности, когда необходимо будет к...

15. Симметричный предусилитель

Симметричный предусилитель Автор прекрасно осознает, что предлагаемый ниже симметричный предусилитель представляет с эволюционной точки зрения тупиковый вариант (хотя в обобщенном с философской точки зрения виде данное условие не казалось вызывающим особую тревогу в течение нескольких последних миллионов лет). Идеальной схемой могла бы являться таковая, в которой сигнал оставался бы уравновешенным на всем своем пути прохождения от симметричного звукоснимателя, или цифро-аналогового преобразова...

16. Электронная лампа, радиолампа. Физика и схемотехника

Итоговая схема Схема источника питания «Потомок от усилителя Beast» Расчет уровня фонового шума от ИП Особенности цифрового сигнала от компакт-диска Каскады предварительного усиления Требования к предусилителю Технические требования к линейному каскаду Традиционный линейный каскад Пути достижения заданных требований и выбор лампы Основные проблемы регулирования громкости Переключаемые аттенюаторы Расчет переключаемого аттенюатора Табличные вычисления для расчета регулятора громкости Светочувствительные резисторы и громкость Входной переключатель Частотный корректор RIAA Влияние провода звукоснимателя Требования к блоку частотной коррекции Метод частотной коррекции стандарта RIAA Раздельное выравнивание характеристики RIAA Шумы и влияние входной емкости входного каскада Учет собственных шумов лампы Улучшение шумовых характеристик с RIAA Расчет элементов на 75 мкс Параметры цепей на 3180 мкс и 318 мкс Симметричный вход и подключение звукоснимателя Симметричный предусилитель Возможности исключения линейного каскада Вариант RIAA с использованием лампы типа ЕС8010 Оптимизация характеристиквходного трансформатора Анализ работы блока RIAA Практические методы настройки блока RIAA Линейный каскад Практические советы О межблочных и акустических кабелях ...

17. Учет собственных шумов лампы

Относительный уровень шума может быть определен с использованием следующего соотношения: Пример. Предусилитель с входным каскадом, построенным на лампе, имеющей значение крутизны 5,3 мА/В, первоначально предназначался для использования со звукоснимателем, имеющим подвижную катушку, совместно с повышающим трансформатором, имеющем коэффициент трансформации 1:10, позволяющим повысить входное напряжение сигнала, поступающего на предусилитель, до значения...

     >>>>>     0
!...................
20
!...................
40
!...................
60
!...................
80
!...................
100
!...................
120
!...................
 

 

 

Информация

 

Информация

Межэлектродные емкости и индуктивности выводов Между любыми двумя электродами лампы имеется емкость. Вывод любого электрода обладает индуктивностью. На рис. 24.1 показаны для примера триод с собственными емкостями и индуктивностями (а) и его эквивалентная схема (б). Эти емкости и индуктивности изменяют параметры колебательных систем, подключенных к лампе. В результате уменьшается собственная частота колебательных систем и становится невозможной настройка их на частоту выше некоторой предельной. Рис. 24.1. Межэлектродные емкости и индуктивности выводов у триода Для каждой лампы характерна предельная частота fпред. Это частота колебательного контура, получающегося при коротком замыкании выводов электродов. Например, если замкнуть накоротко анод и сетку триода, как показано штриховой линией на рисунке, то образуется контур, у которого С = Сa-g + Ca-кCg-к/( Ca-к + Cg-к); (24.1) L= La + Lg + Lпр, (24.2) где Lпр — индуктивность замыкающего провода. Работа лампы с внешним колебательным контуром возможна лишь на чаcтотах ниже fпред. Возьмем для примера лампу, имеющую С = 10 пф и L= 0,016 мкГн. Предельная частота у нее fпред =
1/(2πͩ-
0;LC) =
1/(2πͩ-
0;0,016·10-6·10-
·10-12) ≈ 400·106 Гц = 400 МГц, что соответствует длине волны 75 см. Очевидно, что эта лампа непригодна для дециметрового диапазона, так как при наличии внешнего контура резонансная частота заметно ниже 400 МГц. Индуктивности и емкости лампы, будучи включены в те или иные ее цепи, создают нежелательные положительные или отрицательные обратные связи и фазовые сдвиги, которые во многих случаях ухудшают работу схемы. Особенно сильно влияет индуктивность катодного вывода Lк. Она входит в анодную и сеточную цепи, и создает обратную связь, вследствие чего изменяется режим работы и уменьшается входное сопротивление лампы, т.е. сопротивление между сеткой и катодом, на которое нагружается источник усиливаемого напряжения. Межэлектродные емкости также способствуют уменьшению входного сопротивления лампы. Кроме того, эти емкости, имея на СВЧ весьма небольшое сопротивление, могут вызвать в более мощных лампах значительные емкостные токи, нагревающие выводы электродов и создающие дополнительные потери энергии. Так, например, емкость сетка — катод, равная 4 пФ, на частоте 1000 МГц (λ = 30 см) имеет сопротивление 40 Ом. Если к ней приложено переменное напряжение 40 В, то возникает емкостный ток 1 А! Межэлектродные емкости и индуктивности выводов Между любыми двумя электродами лампы имеется емкость. Вывод любого э

 
 
Сайт создан в системе uCoz