Содержание

 

 
 

Крутизна лампы аналогична параметру биполярного транзистора у21э или крутизне полевого транзистора

1. Схема улучшенного источника питания

При этом следует учитывать, что источник питания должен рассматриваться и конструироваться, как единое целое. Примечание. Как транзистор MJE340, так и интегральный стабилизатор напряжения 317Т серии должны монтироваться на соответствующих теплоотводящих радиаторах с соблюдением тщательно выполненной электрической изоляции. В качестве радиаторов можно использовать, например, алюминиевый уголок с толщиной стенки 3 мм. Низковольтная часть улучшенного блока питания µ-повторитель, входящий в состав большинства предусилителей (например, блока частотной коррекции фирмы RIA А), должен, без всяких сомнений, питаться от низковольтного источника питания с дополнительным внешним смещением, которое ...

2. Общие проблемы устойчивости усилителей

Поскольку наиболее часто используемый в схемах усилителей каскаде общим катодом является инвертором (то есть вносит фазовый сдвиг 180°), то работа цепи обратной связи приведет к самовозбуждению тогда, когда также вызовет фазовый сдвиг сигнала на 180е, скомпенсировав тем самым фазовый сдвиг, вносимый транзистором. В любых сложных многокаскадных цепях обратная связь приведет к возникновению автоколебаний тогда, когда сумма всех фазовых сдвигов, вносимых в сигнал, как усилительными приборами, так и цепями связи, будет равным нулю, либо кратным 360°. При рассмотрении свойств RC-цепи указывалось, что изолированная RC-цепь характеризуется углом сдвига фазы между векторами тока и напряжения, равным 90°. Для возникновения же автоколебаний необходим сдвиг фаз, равный 180°, поэтому однокаскадный усилитель, имеющий только одну RC цепь, которая осуществляет ограничение по НЧ или ВЧ, до...

3. Критерии выбора силового трансформатора и накопительного (сглаживающего) конденсатора

13 Стандартная схема источника питания транзисторного усилителя Величина емкости накопительного конденсатора для этой схемы очень легко может быть определена, если вос...

4. Трансформаторы. Намагничивание и потери

Дополнительным позитивным фактором явилось бы и то, что проектирование транзисторных усилителей стало бы значительно проще, а для ламповых усилителей могла бы оказаться необходимой оптимизация секций вторичной обмотки, а уменьшенное отношение количества витков могло бы еще более улучшить характеристики трансформатора. Однако любой производитель, который выпустил бы громкоговоритель с сопротивлением 16 Ом, уста...

5. Электронная лампа, радиолампа. Физика и схемотехника

Применение диода для выпрямления переменного тока Основные типы Трехэлектродные лампы Физические процессы Токораспределение Действующее напряжение и закон степени трех вторых Характеристики Параметры Рабочий режим триода Особенности Усилительный каскад с триодом Параметры усилительного каскада Аналитический расчет и эквивалентные схемы усилительного каскада Графоаналитический расчет режима усиления Генератор с триодом Межэлектродные емкости Каскады с общей сеткой и общим анодом Недостатки триодов Основные типы приемно-усилительных триодов Многоэлектродные и специальные лампы Устройство и работа тетрода Устройство и работа пентода Схемы включения тетродов и пентодов Характеристики тетродов и пентодов Параметры тетродов и пентодов Межэлектродные емкости тетродов и пентодов Устройство и работа лучевого тетрода Характеристики и параметры лучевого тетрода Рабочий режим тетродов и пентодов Пентоды переменной крутизны Краткие сведения о различных типах тетродов и пентодов Специальные лампы Электронно-лучевые трубки Общие сведения Электростатические электронно-лучевые трубки Магнитные электронно-лучевые трубки Люминесцентный экран Краткие сведения о различных электронно-лучевых трубках Газоразрядные и индикаторные приборы Электрический разряд в газах Тлеющий разряд Стабилитроны Тиратроны тлеющего разряда Индикаторные приборы Дисплеи Краткие сведения о различных газоразрядных приборах Фотоэлектронные приборы Фотоэлектронная эмиссия Электровакуумные фотоэлементы Фотоэлектронные умножители Собственные шумы электронных ламп Причины собственных шумов Шумовые параметры Особенности работы электронных ламп на СВЧ Межэлектродные емкости и индуктивности выводов Инерция электронов Наведенные токи в цепях электродов Входное сопротивление и потери энергии Импульсный режим Основные типы электронных ламп для СВЧ Специальные электронные приборы для СВЧ Общие сведения Пролетный клистрон Отражательный клистрон Магнетрон Лампы бегущей и обратной волны Амплитрон и карматрон Надежность и испытание электровакуумных приборов Надежность и испытание электровакуумных приборов Основы схемотехники ламповых усилителей Усилитель на триоде с общим катодом Ограничения по выбору рабочей точки Режим в рабочей точке Катодное смещение Выбор величины сопротивления резистора в цепи сетки Выбор выходного разделительного конденсатора Вредное влияние проходной емкости лампы и пути его уменьшения Применение экранированных ламп Каскод (каскодная схема) Катодный повторитель Каскад с общим катодом как приемник неизменяющегося тока Пентоды в качестве приемников неизменяющегося тока Катодный повторитель с активной нагрузкой Катодный повторитель Уайта μ-повторитель Выбор верхней лампы для μ -повторителя Параллельно управляемый двухламповый усилитель (SRPP) β-повторитель Дифференциальная пара (дифференциальный каскад) Коэффициент реакции питающего напряжения (PSRR) дифференциальной пары Полупроводниковые приемники неизменяющегося тока для дифференциальной пары Использование транзисторов в качестве активной нагрузки для электронных ламп Искажения в усилителях, их измерение, меры по снижению искажений Классификация искажений. Принципы оценки линейных искажений Принципы измерения нелинейных искажений Измерение и интерпретация искажений Совершенствование измерений нелинейных гармонических искажений Цифровая обработка сигналов Особенности проектирования усилителей с малыми искажениями Работа с сеточным током и нелинейные искажения Уменьшение искажений подавлением (компен...

6. Рабочий режим триода - Графоаналитический расчет режима усиления

Если в анодную цепь лампы в качестве нагрузки включен резонансный контур или трансформатор, то построение рабочих характеристик надо делать иначе, в соответствии с тем как это рассмотрено для транзисторных каскадов с подобными видами нагрузок. Рис. 18.15. Триодный генератор с индуктивной обратной связью ...

7. Симметричный предусилитель

Эти два фактора потребовали использования дополнительного источника отрицательного напряжения, а после того, как эта досадная необходимость была принята, мог быть использован ВЧ транзистор в качестве элемента, обеспечивающего превосходную постоянную токовую нагрузку, позволяя, таким образом, с честью выйти из положения. Рис. 8.30 Схема полностью симметричного предусилителя Обмотка входного трансформатора используется для задания сеточного смещения входного дифференциального усилителя. Нагрузкой трансформатора в чистом виде является нагрузочный резисто...

8. Использование транзисторов в качестве активной нагрузки для электронных ламп

На этой и более высоких частотах, транзистор теряет свои усилительные свойства. hfe(мин) минимальный коэффициент усиления по постоянному току в схеме включения транзистора с общим эмиттером. Опытным путем установлено, что необходимый hfe транзистора обычно требуется равным удвоенном...

9. Полупроводниковые приемники неизменяющегося тока для дифференциальной пары

Диод 1N4148 в этом примере компенсирует температурную нестабильность управляющего напряжения Vбэ нижнего транзистора, но его установка требует перерасчета значений всех элементов схемы. Так называемое «двойное кольцо» на транзисторах (правая схема на рис. 3.43) поддержива...

10. Пример разработки двухтактного усилителя мощности

Если измерять искажения в единицах долей на один миллион, то лучше будет купить неплохой транзисторный усилитель. Если же считать, что восприятие на слух — это все, а измерения — это ничто, то следует приобрести отдельный дом и создать огромный триодный усилитель с несимметричным выходом. По мнению автора необходимо гордиться тем, что хотя измерения в ламповых усилителях не всегда вполне однозначны, и лам...

11. Коэффициент режекции источника питания применительно к отдельным каскадам и устойчивость схемы

39 Использование демпфирующих операционных усилителей в высоковольтном источнике питания для изолирования каскадов Данная идея заключается в том, что для каждого демпфера его собственный вход представлен в виде источника питания с RC-фильтром, а высокое значение усиления демпфера по току позволяет работать на нагрузку с небольшим значением выходного сопротивления, тогда как высокое значение входного сопротивления обеспечивает незначительную нагрузку на RC фильтр. МОП полевой транзистор с р-n переходом оказался бы идеальным элементом для использования в качестве входного демпфера из-за своего чре...

     >>>>>     0
!...................
20
!...................
40
!...................
60
!...................
80
!...................
100
!...................
120
!...................
 

 

 

Информация

 

Информация

Замена головки с сопротивлением 3 Ом на головку с сопротивлением 10 Ом увеличивает уровень потерь до 2,7 дБ, что означает, что 1,8 дБ
чувствительност-
и оказались просто утраченными. Важность влияния этих дополнительных потерь, составляющих 1,8 дБ, заключается в том, что поскольку уровень шума на входе усилителя остается неизменным, поэтому изменение сопротивления источника вызвало дополнительное снижение отношения сигнал/шум на величину 1,8 дБ. Это может быть скомпенсировано заменой входной лампы, так как увеличение крутизны входной лампы на 50% приводит к улучшению соотношения сигнал/шум на 1,8 дБ, однако, замена лампы довольно дорогое мероприятие, поэтому гораздо проще предотвратить ненужные потери перед усилением. Если бы имелась возможность увеличить нагрузочное сопротивление трансформатора, приведенное сопротивление для головки возросло бы, и тогда соотношение сигнал/шум улучшилось бы. К сожалению, на высоких частотах каждый трансформатор подвержен резонансу, характеристики которого определяются в основном значениями индуктивности рассеяния и межвитковой емкости трансформатора. Увеличение нагрузочного сопротивления уменьшает ослабление, приводя к образованию пика на частотной характеристике и «звону». Однако, тщательный подбор параметров так называемой цепи Зобеля (Zobel), включаемой параллельно вторичной обмотке трансформатора может значительно уменьшить явление «звона» в схеме. Значения величин элементов, входящих в схему определяются
экспериментальн-
о (рис. 5.22). Рис. 5.22 Определение значений сопротивления и емкости элементов, образующих схему Зобеля Для подбора этой цепи используется генератор

 
 
Сайт создан в системе uCoz