Содержание

 

 
 

Важнейшие типы электронных приборов СВЧ

1. Особенности работы электронных ламп на СВЧ - Основные типы электронных ламп для СВЧ

Основные типы электронных ламп для СВЧ Электронные лампы для СВЧ конструируются так, чтобы межэлектродные емкости и индуктивности выводов и расстояния между электро...

2. Типы конденсаторов. Металлические конденсаторы с воздушным диэлектриком

Напротив, потери неполярных диэлектриков не зависят от частоты почти до СВЧ диапазона. Практически все диэлектрики, у которых εr > 2,5, являются полярными (табл. 5.1). Таблица 5.1 ДиэлектрикИмяεrdПолярность ПолитетрафторэтиленPTFE, дефлон™2,10,0002север Полистирол 2,60,0002-0,0005север Полипропилен 2,20,0005север Поликарбонат 3,2-3,00,001-0,01юг ПолиэтилентерефталатPET, полистер3,2-3,90,002-0,015юг Пленочные фольговые конденсаторы изготавливаются последовательным чередованием четырех различных слоев из диэлектрика и фольги,...

3. Специальные электронные приборы для СВЧ - Амплитрон и карматрон

Мы познакомились с важнейшими типами электронных приборов СВЧ. Кроме них разработаны многие другие приборы, имеющие пока не такое широкое применение. ...

4. Специальные электронные приборы для СВЧ - Магнетрон

Магнетрон с внешней магнитной системой 1 — вывод СВЧ; 2 —радиатор; 3 — магнит; 4 — вывод подогревателя Рис. 25.10. Влияние магнитного поля на движение электронов в магнетроне Рис. 25.11. Вращающееся электронное «облачко» в магнетроне при отсутствии колебаний Анод магнетрона имеет высокий положительный потенциал относительно катода. Так как анод служит корпусом магнетрона, то его обычно заземляют, а катод находится под высоким отрицательным потенциалом. Между анодом и катодом создается ускоряющее поле, силовые линии которого расположены радиально, как в диоде...

5. Особенности работы электронных ламп на СВЧ - Импульсный режим

Импульсный режим Электронные лампы передатчиков СВЧ во многих случаях работают в импульсном режиме. Например, почти все радиолокационные передатчики дают импульсы длительностью в единицы и десятки микросекунд,...

6. Рабочий режим триода - Каскады с общей сеткой и общим анодом

Поэтому каскад с общей сеткой применяется на СВЧ. Каскад с общим анодом (рис. 18.18) иначе называется катодным повторителем, потому что нагрузка RH включена в провод катода, а выходное н...

7. Электронная лампа, радиолампа. Физика и схемотехника

Применение диода для выпрямления переменного тока Основные типы Трехэлектродные лампы Физические процессы Токораспределение Действующее напряжение и закон степени трех вторых Характеристики Параметры Рабочий режим триода Особенности Усилительный каскад с триодом Параметры усилительного каскада Аналитический расчет и эквивалентные схемы усилительного каскада Графоаналитический расчет режима усиления Генератор с триодом Межэлектродные емкости Каскады с общей сеткой и общим анодом Недостатки триодов Основные типы приемно-усилительных триодов Многоэлектродные и специальные лампы Устройство и работа тетрода Устройство и работа пентода Схемы включения тетродов и пентодов Характеристики тетродов и пентодов Параметры тетродов и пентодов Межэлектродные емкости тетродов и пентодов Устройство и работа лучевого тетрода Характеристики и параметры лучевого тетрода Рабочий режим тетродов и пентодов Пентоды переменной крутизны Краткие сведения о различных типах тетродов и пентодов Специальные лампы Электронно-лучевые трубки Общие сведения Электростатические электронно-лучевые трубки Магнитные электронно-лучевые трубки Люминесцентный экран Краткие сведения о различных электронно-лучевых трубках Газоразрядные и индикаторные приборы Электрический разряд в газах Тлеющий разряд Стабилитроны Тиратроны тлеющего разряда Индикаторные приборы Дисплеи Краткие сведения о различных газоразрядных приборах Фотоэлектронные приборы Фотоэлектронная эмиссия Электровакуумные фотоэлементы Фотоэлектронные умножители Собственные шумы электронных ламп Причины собственных шумов Шумовые параметры Особенности работы электронных ламп на СВЧ Межэлектродные емкости и индуктивности выводов Инерция электронов Наведенные токи в цепях электродов Входное сопротивление и потери энергии Импульсный режим Основные типы электронных ламп для СВЧ Специальные электронные приборы для СВЧ Общие сведения Пролетный клистрон Отражательный клистрон Магнетрон Лампы бегущей и обратной волны Амплитрон и карматрон Надежность и испытание электровакуумных приборов Надежность и испытание электровакуумных приборов Основы схемотехники ламповых усилителей Усилитель на триоде с общим катодом Ограничения по выбору рабочей точки Режим в рабочей точке Катодное смещение Выбор величины сопротивления резистора в цепи сетки Выбор выходного разделительного конденсатора Вредное влияние проходной емкости лампы и пути его уменьшени...

8. Специальные электронные приборы для СВЧ - Общие сведения

Специальные электронные приборы СВЧ делятся на две группы: О-типа и М-типа. В приборах О-типа постоянное магнитное поле отсутствует или применяется только для фокусировки электронного потока. А для приборов М-типа характерно наличие так называемых скрещенных, т.е. взаимно перпендикулярных, постоянных электрического и магнитного полей. Именно совместное действие этих...

9. Особенности работы электронных ламп на СВЧ - Инерция электронов

Рассмотрим особенности электронных процессов в триоде на СВЧ, имея в виду, что электрон большую часть времени пролета тратит на промежуток катод — сетка, так как здесь ускоряющая разность потенциалов невелика. Пусть, для примера, время пролета на этом участке равно половине периода, а рабочая точка установлена в самом начале анодно-сеточной характеристики лампы. На более низких частотах при этом был бы режим отсечки анодного тока, т. е. импульсы анодного тока проходили бы в течение положительных полупериодов переменного сеточного напряжения, а во время отрицательных полупериодов лампа была бы заперта. Но если t...

10. Трансформаторы - Общие сведения

Еще на более высоких частотах — в СВЧ диапазонах практически все магнитные материалы характеризуются настолько высокими потерями, что остается использовать трансформаторы с воздушно разделенными катушками. Потери на перемагничивание сердечника (гистерезис) и вихревые токи достаточно часто в силовых трансформаторах объединяются под общим названием магнитных потерь и именно они чаще всего бывают причиной нагрева сердечника трансформатора даже в тех случаях, когда нагрузка к нему не подключена. В реальных трансформа...

11. Особенности работы электронных ламп на СВЧ - Межэлектродные емкости и индуктивности выводов

Кроме того, эти емкости, имея на СВЧ весьма небольшое сопротивление, могут вызвать в более мощных лампах значительные емкостные токи, нагревающие выводы электродов и создающие дополнительные потери энергии. Так, например, емкость сетка — катод, равная 4 пФ, на ч...

12. Электронно-лучевые трубки - Электростатические электронно-лучевые трубки

В настоящее время для осциллографии на СВЧ применяют специальные трубки с более сложными отклоняющими системами. Измерение и наблюдение переменных напряжений. Если к отклоняющим пластинам «игрек» подведено переменное напряжение, то электронный луч совершает колебания и на экране видна вертикальная светящаяся че...

13. Особенности работы электронных ламп на СВЧ - Наведенные токи в цепях электродов

Процессы заряда и разряда аккумуляторной батареи наведенным током, конечно, не имеют практического применения в технике СВЧ и описаны только в качестве примера. Рис. 24.5. Наведенный ток при движении электронов в поле, созданном переменным напряжением колебательного контура Следует учитывать также возникновение наведенных токов в колебательных контурах, подключенных к лампе. На рис. 24.5 изображен колебательный контур, состоящий из индуктивности L и емкости С, которой может быть емкость между двумя электродами лампы. Пусть в контуре происходят свободные затухающие колебания. Тогда на зажимах контура и на электродах лампы будет переменное напряжение. Предположим, что между электродами дв...

14. Широкополосная фильтрация

Это означает, что даже проводник длиной 100 мм обладает некоторой индуктивностью и может быть использован в качестве дросселя в СВЧ диапазоне, но в то же время он представляет и антенну, длина которой должна быть минимальной в области пространства, расположенного в непосредственной близости с нагрузкой. Поэтому, постоянная времени LC будет равна: В качестве обычного примера можно начать рассмотрение с источника питания с дросселем, имеющим индуктивность 15 Гн и фил...

15. Специальные электронные приборы для СВЧ - Пролетный клистрон

Принцип устройства многорезонаторного пролетного клистрона ФК — фокусирующая катушка; ФЭ — фокусирующий электрод Современные пролетные клистроны различаются по режиму работы (импульсный или непрерывный), выходной мощности, типу и числу резонаторов, способам фокусировки электронного потока, ввода и вывода энергии СВЧ, перестройки частоты, охлаждения и по другим особенностям. При импульсной работе частота следования импульсов обычно бывает от десятков до тысяч герц, а длительность импульса — от долей микросекунды до миллисекунд. Пролетные клистроны разделяю...

16. Особенности работы электронных ламп на СВЧ - Входное сопротивление и потери энергии

Точный анализ работы ламп СВЧ сложен. Теория дает следующую формулу для результирующего наведенного тока сетки Ig при переменном сеточном напряжении Ug: Ig = kSf2t2g-кUg, (24.5) где k — коэффициент пропорциональности, зависящий от конструкции и постоянных напряжений электродов; S — крутизна лампы; tg-к — время пролета электрона в промежутке катод — сетка. Отсюда для входного сопротивления получается выражение Rвх = Ug/Ig = l/(kSf2t2g-к). (24.6) Для данной лампы и данных питающих напряжений на электро...

     >>>>>     0
!...................
20
!...................
40
!...................
60
!...................
80
!...................
100
!...................
120
!...................
 

 

 

Информация

 

Информация

Устройство и работа лучевого тетрода Кроме пентодов получили распространение лучевые тетроды. В них динатронный эффект устранен путем создания для вторичных электронов потенциального барьера между экранирующей сеткой и анодом. В лучевом тетроде увеличено расстояние между экранирующей сеткой и анодом и сетки имеют одинаковое число витков, причем витки расположены друг против друга. При такой конструкции электроны летят от катода к аноду более плотными пучками — «лучами» (рис. 19.9). Чтобы они не летели в направлении держателей сеток, имеются экраны Э1 и Э2, соединенные с катодом. Кроме того, поверхность катода, находящаяся против держателей сеток, не покрывается оксидным слоем и поэтому не эмитирует. За счет более плотных электронных потоков возрастает плотность объемного заряда. Это вызывает понижение потенциала в пространстве между анодом и экранирующей сеткой. Если напряжение анода ниже, чем экранирующей сетки, то в промежутке экранирующая сетка — анод образуется потенциальный барьер для вторичных электронов. На рис. 19.10 показано распределение электронов в электронном пучке и потенциала в промежутке анод — экранирующая сетка при uа < иg2. Кривая 1 соответствует обычному тетроду или лучевому тетроду, если ток в нем небольшой. Кривая 2 для лучевого тетрода с нормальным анодным током показывает, что при иа = 50 В и иg2 = 200 В создается потенциальный барьер «высотой» 30 В для вторичных электронов, выбитых с анода. На участке от φmin = 20 В до анода на вторичные электроны действует тормозящее поле, которое возвращает их на анод. А первичные электроны, имея большие скорости за счет напряжения экранирующей сетки, преодолевают этот барьер и попадают на анод. В обычных тетродах экранирующая сетка «разбивает» электронные потоки и перехватывает много электронов. Поэтому не получаются достаточно плотные электронные потоки и не создается потенциальный барьер для вторичных электронов. Достоинство лучевых тетродов — уменьшенный ток экранирующей сетки (не более 7 % анодного). Устройство и работа лучевого тетрода Кроме пентодов получили распространение лучевые тетроды. В них динатронный эффект устранен путем создания для вторичных электронов потенциального барьера между экранирующей сеткой и анодом. В лучевом тетроде увеличено расстояние между экранирующей сеткой и анодом и сетки имеют одинаковое число витков, причем витки расположены друг против друга. При

 
 
Сайт создан в системе uCoz