Содержание

 

 
 

Дополнительный нагрев катода

1. Особенности проектирования усилителей с малыми искажениями

(0—25 кГц) Хотя сеточный ток существует только при положительном напряжении на сетке относительно катода, реальные электронные лампы начинают проводить сеточный ток при немного более отрицательных напряжениях на сетке из-за эффекта термопары в соединении между различными нагреваемыми металлами в лампе и электронным облаком над поверхностью катода. У маломощных приемо-усилительных ламп обычно, сеточный ток появляется при нап...

2. Особенности работы электронных ламп на СВЧ - Инерция электронов

Из-за этого происходит дополнительный нагрев катода. Мощность на нагрев расходуется источником переменного сеточного напряжения. Что же касается электронов, успевших проле...

3. Линейный каскад

Если рассматриваемая схема питается традиционным способом с использованием лампового выпрямителя и все источники питания подключены к одному и тому же силовому трансформатору, нагрев катода пентода EF184 может произойти быстрее, чем триода 6С45П, оставляя пентод EF184 уязвимым в отношении проблемы тока второй сетки. Поэтому вариант использования стабилизатора THINGY был отвергнут, и окончательно принят менее эффективн...

4. Электронно-лучевые трубки - Люминесцентный экран

Большая часть энергии луча расходуется на нагревание экрана, выбивание вторичных электронов и испускание ультрафиолетовых и рентгеновских лучей. Люминесцентный экран характеризуется светоотдачей, т. е. силой света на 1 Вт мощности электронного луча. Светоотдача максимальна при температуре люминофора от 0 до 80 °С. С дальнейшим повышением температуры светоотдача падает; при 400°С свечение вообще прекращается. Рис. 20.22. Зависимость коэффициента вторичной эмиссии люминесцентного экрана от энергии первичных электронов Нарастание свечения, или разгорание экрана, после начала его...

5. Усилитель класса А для электромагнитных головных телефонов с непосредственной междукаскадной связью

Так как мы при увеличении анодного тока Ia, рассеиваемая на аноде тепловая мощность Ра также увеличивается, во избежание перегрева лампы требуется уменьшать нагрев, понижая анодное напряжение Va, не забывая при этом учитывать необходимость работать без сеточного тока. Установка анодного напряжения Va= 135 В соответствует работе без сеточного тока. Величина предельно-допустимого значения мощности, рассеиваемой на аноде лампы типа 6С45П составляет всего Ра(макс) = 7,8 Вт, тем не менее все другие технические характеристики этой лампы являются довольно оптимистичными. Разумеется, разумно работать не достигая предельно-допустимой рассеиваемой мощно...

6. Двухэлектродные лампы - Рабочий режим. Применение диода для выпрямления переменного тока

Если в секунду на анод попадает N электронов и каждый из них обладает энергией mv2/2, то мощность, отдаваемая электронным потоком на нагрев анода, Ра = Nmv2/2. (16.9) Энергию электроны получают от ускоряющего поля. Пренебрегая их начальной энергией, можно считать, что mv2/2 ≈ qua. Тогда Ра = Nqua. (16.10) Произведение Nq есть количество электричества, попадающее за 1 с ...

7. Особенности работы электронных ламп на СВЧ - Межэлектродные емкости и индуктивности выводов

Кроме того, эти емкости, имея на СВЧ весьма небольшое сопротивление, могут вызвать в более мощных лампах значительные емкостные токи, нагревающие выводы электродов и создающие дополнительные потери энергии. Так, например, емкость сетка — катод, равная 4 пФ, на частоте 1000 МГц (λ = 30 см) имеет сопротивление 40 Ом. Если к ней приложено переменное напряжение 40 В, то возникает емкостный ток 1 А! ...

8. Типы конденсаторов. Алюминиевые электролитические конденсаторы

При этом такой способ имеет еще то преимущество, что позволяет чисто визуально судить о работоспособности компонента. При постепенном нагреве пары электролита удаляются через герметизирующие прокладки конденсатора, так как в природе не существует идеальных уплотнителей. Поэтому по мере снижения уровня электролита площадь контакта с вытравленными углублениями и неровностями уменьшается, в результате чего возрастает последовательное эквивалентное...

9. Особенности работы электронных ламп на СВЧ - Основные типы электронных ламп для СВЧ

В генераторных лампах особое значение приобретает охлаждение анода и лампы в целом, так как из-за больших потерь энергии лампы сильно нагреваются. Лампы дециметрового диапазона, конечно, могут работать на более длинных волнах, но для сантиметровых волн большинство их непригодно. Некоторые из пальчиковых и миниатюрных бесцокольных ламп применяются для генерации и усиления на дециметровых волнах (на частотах в сотни мегагерц)., Для дециметровых и «длинных» сантиметровых волн сконструированы лампы с дисковыми и цилиндрическими выводами, имеющие в конце обозначения букву Д. Выводы электродов в виде цилиндров и дисков различного диаметра служат для соединения лампы с коаксиальными резонансным...

10. Табличные вычисления для расчета регулятора громкости

Качество пайки будет выше, если нагрев начинать со штыревого вывода переключателя и нанесения на него капли припоя до того, как для завершения процесса жало паяльника начинает прогрев выводов резисторов. Для пайки элементов, предназн...

11. Основные вопросы, возникающие при выборе конденсатора

Температурный режим Будет ли конденсатор при работе нагреваться и какой температурный режим ожидается? Вызовут ли изменения емкости изменения в работе схемы? Как правило, рабочая температура конденсатора не должна превышать 50°С (так как сопротивление диэлектрика снижается с увеличением температуры). Следует учитывать, что и эта температура может быть ...

12. Специальные электронные приборы для СВЧ - Пролетный клистрон

В результате всего этого большая часть энергии бесполезно тратится на нагрев сеток и анода, так как все электроны в конечном счете с какой-то скоростью попадают на эти электроды. Двухрезонаторные клистроны применяют для усиления в перед...

13. Точное определение параметров выходного трансформатора

Можно использовать тонкопленочный резистор МРС-5, который является безиндуктивным, но подверженный очень сильному нагреву при мощностях рассеяния более 2 Вт в обычную воздушную среду. Либо можно привинтить к шасси плакированный алюминием проволочный резистор WH15, который будет оставаться холодным, но под вопросом окажется его небольшая индуктивность, которой характеризуются все н...

14. Трансформаторы - Общие сведения

Потери на перемагничивание сердечника (гистерезис) и вихревые токи достаточно часто в силовых трансформаторах объединяются под общим названием магнитных потерь и именно они чаще всего бывают причиной нагрева сердечника трансформатора даже в тех случаях, когда нагрузка к нему не подключена. В реальных трансформаторах далеко не ...

15. Ряды стандартизованных значений сопротивлений

Дополнительно к этому следует всегда убедиться, что такой резистор не будет нагреваться за счет близко расположенных и сильно нагретых соседних элементов. ...

16. Трансформаторный катодный повторитель в качестве выходного каскада

Электрическое объединение цепей подогревателя и катода решает эту проблему, но требует изготовления индивидуальной обмотки цепи подогревателя катода для каждого плеча выходного каскада (чтобы избежать короткого замыкания между ними) и заставляет каждую лампу работать на дополнительную нагрузку в виде межвитковой емкости (порядка 1 нФ) силового трансформатора. Источник ВЧ нагрева с использованием малогабаритного трансформатора, имеющего отдельные обмотки, мог бы решить последнюю задачу, но только за счет возможной проблемы возникновения радиопомех и увеличения стоимости. Тем ни менее, существуют типы ламп, изо...

17. Проблемы смещения по постоянному току

При условии, что катодный, текущий через аккумулятор Iк ≤ С/10 (где С — емкость аккумуляторного элемента в ампер-часах), самонагрев, вызванный непрерывной зарядкой не разрушит элемент. Тем не менее, поскольку элемент установлен в ламповых усилителях, возможен его нагрев до более высокой температуры, чем предполагалось изготовителем аккумулятора,...

     >>>>>     0
!...................
20
!...................
40
!...................
60
!...................
80
!...................
100
!...................
120
!...................
 

 

 

Информация

 

Информация

Действующее напряжение и закон степени трех вторых Катодный ток триода можно рассчитать путем замены триода эквивалентным диодом, если в триоде на месте сетки расположить анод. В таком диоде при некотором анодном напряжении анодный ток получается равным катодному току в триоде. Это напряжение называется действующим напряжением иД и выражается формулой иД ≈ иg + D uа = иg + uа /μ (17.2) Смысл этой формулы следующий. Сетка действует своим полем в полную силу, без ослабления, а поле, создаваемое анодным напряжением в пространстве сетка — катод, ослаблено за счет экранирующего действия сетки. Ослабление действия анода характеризуется проницаемостью D или коэффициентом усиления μ. Поэтому uа нельзя складывать с uВ, а нужно сначала умножить на D или разделить на μ. Приведенная формула является приближенной. В эквивалентном диоде анодный ток равен катодному току триода, а роль анодного напряжения выполняет действующее напряжение. Поэтому закон степени трех вторых для триода можно написать так: iк = guД3/2 = g(ug+Dua)3/2 (17.3) Учитывая, что в эквивалентном диоде анод расположен на месте сетки реального триода, для триода с плоскими электродами получаем g =
2,33·10-6Qa/dg--
k2, (17.4) где dg-k — расстояние сетка — катод. Площадь поверхности анода Qa в эквивалентном диоде в этом случае равна площади поверхности действительного анода. Формула (17.3) содержит в неявном виде расстояние анод — катод и размеры, определяющие густоту сетки: от этих величин зависит проницаемость. Закон степени трех вторых для триодов является приближенным, но он полезен при теоретическом рассмотрении работы триода. А для практических расчетов пользуются
характеристикам-
и, опубликованными в справочниках. С помощью закона степени трех вторых можно найти при данном напряжении ua запирающее напряжение сетки ugзап. Если лампа заперта, то iк = 0. Из закона степени трех вторых ясно, что это возможно только при условии uд = ugзап + Dua = 0. (17.5) Решая уравнение (17.5) относительно ugзап получим ugзап = - Dua. или ugзап = - uа /μ (17-6) Действительное запирающее напряжение обычно несколько больше по абсолютному значению, чем определяемое формулой (17.6). Действующее напряжение и закон степени трех вторых Катодный ток триода можно рассчитать путем замены триода эквивалентным диодом, если в триоде на месте сетки расположить анод. В таком диоде при некотором анодном напряжении анодный ток получается равным катодному току в триоде. Это напряжение называется действующим напряжением иД и выражается форму

 
 
Сайт создан в системе uCoz