Содержание

 

 
 

Испытание усилителя, не охваченного глубокой отрицательной обратной связью (например, ламповый усилитель)

1. Катодный повторитель Уайта

При внешнем различии, независимый катодный повторитель Уайта и двухламповый каскад SRPP, описанный позже, являются параллельно управляемыми усилителями, потому что две электронные лампы вносят сво...

2. Классическая схема последовательного стабилизатора

27 Схема последовательного стабилизатора напряжения В приведенной схеме использованы полупроводниковые элементы, однако, возможен и ламповый вариант реализации этой схемы, обладающей аналогичными свойствами. Усилитель рассогласования (погрешностей) усиливает разностный сигнал между опорным напряжением и частью выходного напряжения и управляет работой по...

3. Возможности исключения линейного каскада

В настоящее время уровень цен делает приобретение такого оборудования вполне доступным, что позволяет рассматривать его в качестве потенциального кандидата для переделки под ламповый вариант. Головки магнитофона марки Studer требуют перемещения до положения, пока плоскость, проходящая через лицевые поверхности, не выйдет за пределы 3 мм, а тонвал двигателя лентопротяжного механизма не перестанет быть блестящим. Любые механические переделки является дорогостоящим предприятием, поэтому не стоит становиться кандидатом на безрассудные поступки, даже при покупке вещи по сходной цене. • Аналоговые кассеты. Несмотря ...

4. Параллельно управляемый двухламповый усилитель (SRPP)

Параллельно управляемый двухламповый усилитель (SRPP) Каскад типа SRPP был разработан в начале 1950-х годов для использования в качестве усилителя мощности или модулятора в телевизионных передатчиках, где требовалось развивать на выходе с малыми искажениями около 1100 В переменного напряжения на нагрузке 400 Ом параллельно с емкостью 50...

5. Основные виды источников питания

1 Сравнение блок-схем линейного и импульсного источников питания В противоположность импульсным источникам питания в линейных блоках сетевое напряжение промышленной частоты, чаще всего 50 Гц, с использованием массивного силового трансформатора, прежде всего понижается или повышается до необходимого значения. Затем включается ламповый или полупроводникового выпрямитель, совместно с которым используются сглаживающие конденсаторы большой емкости, либо еще большие по габаритам дроссели, сглаживающие пульсации, Наконец, выпрямленное и сглаженное напряжение поступает на необходимые схемы стабилизаторов. Линейные блоки питания очень массивные, у них очень маленький КПД, но при проектировании они требуют выполнен...

6. Измерение и интерпретация искажений

Если же испытывается усилитель, не охваченный глубокой отрицательной обратной связью (например, ламповый усилитель), то измерение СКГ на одной частоте вполне может оказаться приемлемым. Электронная лампа является нелинейным элементам и вносит нелинейные искажения, поскольку ее проходная характеристика нелинейна. Эту нелинейность можно считать один...

7. Особенность выпрямления высоковольтного напряжения

При включении сетевого питания с силового трансформатора на ламповый выпрямитель одновременно подается как высоковольтное напряжение так и напряжение питания подогревателя, но так как подогреватель катода еще холодный, то катод подвергается вредному воздействию сильного поля, создаваемого анодным напряжением, что уменьшает его срок службы. Хотя размещение реле задержки в цепи подогревателя выпрямительной лампы обеспечивает ситуацию, при которой высоковольтное напряжение в цепях зв...

8. Электронная лампа, радиолампа. Физика и схемотехника

Применение диода для выпрямления переменного тока Основные типы Трехэлектродные лампы Физические процессы Токораспределение Действующее напряжение и закон степени трех вторых Характеристики Параметры Рабочий режим триода Особенности Усилительный каскад с триодом Параметры усилительного каскада Аналитический расчет и эквивалентные схемы усилительного каскада Графоаналитический расчет режима усиления Генератор с триодом Межэлектродные емкости Каскады с общей сеткой и общим анодом Недостатки триодов Основные типы приемно-усилительных триодов Многоэлектродные и специальные лампы Устройство и работа тетрода Устройство и работа пентода Схемы включения тетродов и пентодов Характеристики тетродов и пентодов Параметры тетродов и пентодов Межэлектродные емкости тетродов и пентодов Устройство и работа лучевого тетрода Характеристики и параметры лучевого тетрода Рабочий режим тетродов и пентодов Пентоды переменной крутизны Краткие сведения о различных типах тетродов и пентодов Специальные лампы Электронно-лучевые трубки Общие сведения Электростатические электронно-лучевые трубки Магнитные электронно-лучевые трубки Люминесцентный экран Краткие сведения о различных электронно-лучевых трубках Газоразрядные и индикаторные приборы Электрический разряд в газах Тлеющий разряд Стабилитроны Тиратроны тлеющего разряда Индикаторные приборы Дисплеи Краткие сведения о различных газоразрядных приборах Фотоэлектронные приборы Фотоэлектронная эмиссия Электровакуумные фотоэлементы Фотоэлектронные умножители Собственные шумы электронных ламп Причины собственных шумов Шумовые параметры Особенности работы электронных ламп на СВЧ Межэлектродные емкости и индуктивности выводов Инерция электронов Наведенные токи в цепях электродов Входное сопротивление и потери энергии Импульсный режим Основные типы электронных ламп для СВЧ Специальные электронные приборы для СВЧ Общие сведения Пролетный клистрон Отражательный клистрон Магнетрон Лампы бегущей и обратной волны Амплитрон и карматрон Надежность и испытание электровакуумных приборов Надежность и испытание электровакуумных приборов Основы схемотехники ламповых усилителей Усилитель на триоде с общим катодом Ограничения по выбору рабочей точки Режим в рабочей точке Катодное смещение Выбор величины сопротивления резистора в цепи сетки Выбор выходного разделительного конденсатора Вредное влияние проходной емкости лампы и пути его уменьшения Применение экранированных ламп Каскод (каскодная схема) Катодный повторитель Каскад с общим катодом как приемник неизменяющегося тока Пентоды в качестве приемников неизменяющегося тока Катодный повторитель с активной нагрузкой Катодный повторитель Уайта μ-повторитель Выбор верхней лампы для μ -повторителя Параллельно управляемый двухламповый усилитель (SRPP) β-повторитель Дифференциальная пара (дифференциальный каскад) Коэффициент реакции питающег...

9. Рабочий режим триода - Усилительный каскад с триодом

Подобно усилительному каскаду с транзистором ламповый каскад усиливает мощность колебаний. Рассмотрим усиление синусоидальных колебаний не...

10. Традиционный линейный каскад

Традиционный линейный каскад В самых общих чертах ламповый предусилитель должен рассчитываться из условия, при котором в нагрузку с резистивной составляющей входного сопротивления величиной 1 МОм необходимо подавать сигнал величиной 2 В, даже если это потребует внесения изменений в усилитель мощности для достижения условия согласования каскадов. Рис. 8.2 Изменение схемы стандартного входного каскада при переключении пентода на триодную схему работы Более старые модели источников сигнала (о...

11. Ламповый стабилизатор напряжения

В качестве примера возникающей проблемы можно привести ламповый фотоприемник цветного изображения EMI2001, в котором ток электронного луча управлялся экранирующей сеткой g2. Когда была заказана новая лампа (всего-навсего каких-то 1500 фунтов стерлингов, по курсу 1986 г.), оказалось необходимым провести дополнительные исследования с целью точно восстановить необходимый режим работы указанной лампы в данном фото...

12. Использование накопительного конденсатора для снижения высоковольтного напряжения

Следует обратить внимание на полное отсутствие выбросов С другой стороны, когда для получения положительного высоковольтного напряжения используется стандартный ламповый выпрямитель, оказывается необходимым использовать трансформатор, имеющий отвод от средней точки, однако, эти же ...

13. Раздельное выравнивание частотной характеристики блока коррекции RIAA

Для этого будут использоваться пассивные элементы, обеспечивающие постоянную времени 75 мкс, за которыми будут действовать объединенные в пару цепи, задающие постоянные времени 3180 мкс и 318 мкс, а в качестве усилительного элемента будет использован ламповый триод. Блок-схему такого предусилителя удобно изобразить в виде, представленном на рис. 8.18. Рис. 8.18 Блок-схема предусилителя с блоком частотной характеристики RIAA Составление блок-схемы всегда полезно, прежде всего, потому, что позволяет более точно определиться со схемой и установить необходимость использования требуемого числа каскадов. Следуе...

14. Перенапряжения, возникающие при включении схемы

Перенапряжения, возникающие при включении схемы В случаях, когда не используется ламповый выпрямитель, а применен полупроводниковый, высоковольтное напряжение при включении подается в цепи схемы мгновенно, и если это происходит до тог...

15. Требования к каскаду предоконечного усиления

• параллельно управляемый двухламповый усилитель SRPP может обеспечить значение rа менее 4,3 кОм и больший размах амплитуд по сравнению с использованием μ-повторителя, но с более высоким уровнем искажений. Использование μ-повторителя представляется весьма целесообразным выбором, однако тестирование показало, что имеющееся высоковольтное напряжение 290 В не является до...

16. Выпрямление переменного тока

При рассмотрении схемы высоковольтного источника питания, для которого напряжение постоянного тока VDC не превышает 1 кВ, необходимо сделать выбор между использованием кремниевого полупроводникового диода или вакуумного термоэлектронного диода (кенотрона), например, такого, как GZ34. Ламповый выпрямительный диод не отличается высокой эффективностью работы. Дело заключается не только в том, что для него требуется источник питания подогревателей, но ...

     >>>>>     0
!...................
20
!...................
40
!...................
60
!...................
80
!...................
100
!...................
120
!...................
 

 

 

Информация

 

Информация

Можно подсчитать ток через резистор, и, следовательно, через электронную лампу. В нашем примере RH= 175 кОм, ВН = 350 В, таким образом ток анода 1а — 2 мА, и можно обозначить на графике и эту точку. Так как закон Ома является линейным уравнением, которое описывает прямую линию, то если мы знаем две точки, мы полностью определили эту прямую. Это означает, что теперь можно начертить прямую линию между двумя нанесенными точками, как показано на графике (рис. 3.3). Рис. 3.3 Нагрузочная линия Итак, мы построили нагрузочную линию или динамическую характеристику. Она показывает как изменяется анодный ток при одновременном изменении анодного и сеточного напряжений. Мы определили ток анода для любого анодного напряжения, используя ВН 350 В и анодную нагрузку 175 кОм. Если нужно изменить анодную нагрузку или ВН, мы должны пересчитать и перечертить нагрузочную линию. Метод нагрузочных линий является одним из наиболее наглядных видов анализа, который можно выполнить на каскаде с электронной лампой и очень широко используется при расчетах. Если рассматривать нагрузочную линию, то можно увидеть, что она пересекается в разных точках с кривыми выходных характеристик лампы I(Va) для различных значений Vck. Это означает, что зная пределы изменения входного напряжения Vck можно оценить соответствующие им изменения анодного напряжения, и затем подсчитать коэффициент усиления каскада по напряжению. Предположим, что мы подадим на вход каскада усиления синусоидальное колебание размахом 8 В (то есть амплитудой 4 В), которое приложено относительно нулевого напряжения смещения (в схеме на рис. 3.3 никакого постоянного напряжения на сетку не подается). Если начать отсчет с характеристики, соответствующей нулевому сеточному напряжению, то увидим что линия статической характеристики пересекает нагрузочная линию при Va = 72 В. Затем рассмотрим наиболее отрицательное значение синусоидального колебания — 4 В, и увидим, что при пересечении с нагрузочной линией оно даст в результате Va = 332 В. Для приложенного на входе напряжения — 4 В, получим положительное изменение напряжения на аноде 260 В. Таким образом, усилитель с общим катодом инвертирует входной колебание, когда отрицательной полуволне входного колебания соответствует положительная полуволна выходного и наоборот. Поскольку коэффициент усиления по напряжению определяется как отношение выходного напряжения к входному напряжению, то

 
 
Сайт создан в системе uCoz