Содержание

 

 
 

Постоянная времени связана с частотой колебаний , то есть постоянная времени 318 мкс соответствует периоду колебаний с частотой 500,5 Гц

1. Номинальное значение тока дросселя

Если вернуться к разложению двухполупериодной последовательности в ряде Фурье, то видно, что вклад четвертой гармоники составляет 20% относительно напряжения второй гармоники (0,12/0,6). Так как с увеличением частоты индуктивное сопротивление дросселя (для четвертой гармоники) возрастет вдвое, то величина тока на четвертой гармоники в дросселе снизится в два раза. Таким образом, доля тока четвертой гармоники относительно величины тока второй гармоники составит только 10%. Поэтому использованное допущение оказывается вполне справедл...

2. Выбор электронной лампы по критерию низких искажений

Таким образом, намагничивание, и размагничивание достигнуто решением в лоб — катушка размагничивания была 10 дюймов (250 мм) в диаметре, потребляя 750 ВА, и рассчитана только для периодического использования. Необходимость тестирования для отбора электронных ламп с малыми искажениями При проектировании каскадов усиления мощности зачастую во главу угла ставится проблема получения максимальной мощности, а о необходимости минимизации искажений вспоминают лишь во вторую очередь,...

3. Принцип устройства и работы электро-вакуумных приборов - Термоэлектронные катоды

От момента включения (выключения) тока накала до полного разогрева (остывания) катода нужны десятки секунд. За четверть периода (0,005 с при частоте 50 Гц) температура катода не успевает заметно измениться и эмиссия не пульсирует. Поверхность катода косвенного накала является эквипотенциальной. Вдоль катода нет падения напряжения от тока накала. Анодное напряжение для всех точек поверхности катода одно и то же и не пульсирует при колебаниях напряжения накала. Достоинство ламп с катодами косвенного накала, кроме того, — ослабление микрофонного эффек...

4. Влияние напряжения пульсаций на выходное напряжение

Последний фактически составляет ток, необходимый для полного восстановления заряда на конденсаторе во время каждого полупериода. Чтобы определить величину этого тока, необходимо найти значение угла проводимости, который представляет время, в течение которого диоды остаются во включенном состоянии и одновременно заряжается конденсатор (рис. 6.8). Рис. 6.8 Определение угла проводимости по величине напряжения пульсаций Для определ...

5. Критерии выбора силового трансформатора и накопительного (сглаживающего) конденсатора

На протяжении очень короткого начального периода времени (менее времени заряда конденсатора) выходное сопротивление источника питания определяется суммой эквивалентного последовательного сопротивления конденсатора и сопротивления проводов. Это будет оставаться справедливым даже в случае протекания переходных токов с очень высокими значениями, которые могут возникать при первом и последующих циклах заряда при условии, что они при этом не очень значительно меняю...

6. Использование транзисторов в качестве активной нагрузки для электронных ламп

Чтобы обеспечить максимальный неискаженный размах выходного напряжения, нужно ни при положительном, ни при отрицательном полупериоде усиливаемого колебания не попадать в область искажений. Таким образом, рабочую точку нужно установить посередине между минимальным и максимальным анодными напряжениями, за пределами которых будут появляться значительные искажения: Зная величину анодного напряжения в точке покоя, по статическим характеристикам легко определить требуемое напряжения смещения Vck = 8 В, которое легко может быть обеспечено, например установкой в катодную цепь стабилитрона на 8,2 В (рис. 3.46). Поскольку каскад, рассматриваемый в данном приме...

7. Типы конденсаторов. Алюминиевые электролитические конденсаторы

По этой причине рекомендуется использовать регулируемый автотрансформатор, например, Variac, для того, чтобы постепенно увеличивать напряжение питания оборудования, в состав которого входят электролитические конденсаторы, после длительного периода, когда оборудование не использовалось. Современные конденсаторы снабжаются специальными уплотняющими прокладками, которые предотвращают чрезмерное повышение внутреннего давления и ...

8. Специальные электронные приборы для СВЧ - Магнетрон

Такой электрон, приблизившись к щели резонатора 3, опять окажется в тормозящем переменном поле, так как через полпериода у этого резонатора ускоряющее поле изменится на тормозящее. Следовательно, электрон снова отдаст часть энергии резонатору и проделает еще меньший путь по направлению к катоду. В конце концов, израсходовав значительную часть энергии, электрон попадает на анод. Рассмотренная траектория «полезного» электрона, кон...

9. Выбросы тока и демпфирующие элементы

Дроссель будет пытаться поддержать неизменное значение тока, поэтому на нем возникнет напряжение самоиндукции, которое определяется выражением: В любой схеме двухполупериодного выпрямления диоды выключаются с частотой, равной удвоенному значению частоты тока сети питания, и в этот момент времени изменение тока во времени, di/dt = ∞, поэтому с частотой, равной удвоенной частоте тока сети питания, в дросселе возникают выбросы напряжения, размах которых теоретически...

10. Усилитель на триоде с общим катодом

Если теперь рассмотреть положительный полупериод синусоидального колебания продолжить повышение сеточного напряжения выше 0 В, обнаружится, что анодное напряжение неспособно понижаться в таких же пределах, как оно повышалось при действии отрицательной ...

11. Выбор верхней лампы для μ-повторителя

Так как сеточный ток срезается только на одном полупериоде, и асимметрично вызывает четные гармоники, можно ожидать все возможные гармоники (рис. 3.33). Рис. 3.33 Спе...

12. Режимы работы усилительных приборов. Классы усилителей

Под угловой длительностью импульса тока понимается часть периода (выраженная в радианах), в течение которой существует анодный ток. Под углом отсечки (наиболее часто применяемом для количественного описания режима работы усилительных приборов) понимается половинное значение этой длительности. Используя данный термины, и учитывая, что полный пери...

13. Двухтактный выходной каскад

Двухтактный выходной каскад Как было показано, работа однотактного каскада в режиме класса В вносит значительные искажения за счет однополупериодного усиления входного сигнала, что приводит к появлению высших гармоник. Естественно, это является весьма существенным недостатком для высококачественных усилителей Hi-Fi, для которых требуется высокая линейность характеристик. Рис. 7.5 Сложение сигналов двух каскадов класса В в выходном трансформаторе Теперь предположим, что имеется две лампы, работающие в режиме класса В, на одну из них подается непосредственно входной сигнал, а на другую подается инвертированный (то есть противофазные ему) сигнал. Во время интервала t1 проводит ток верхняя лампа, ...

14. Цифровая обработка сигналов

В частности, вся математика БПФ построена на предположении, что обрабатываемый сигнал является периодически повторяющимся процессом. Это предположение может показаться тривиальным, но оно имеет важные последствия. Любые реальные сигналы всегда случайны и далеко не всегда периодичны. В реальном сигнале очень трудно выделить один период с достаточной точностью, что вызовет существенную погрешность при обработки с помощью БПФ. Для уменьшения этой ошибки, обработку производят не по одному периоду, а по значительно большему их количеству. При этом точность обработки существенно повышается, но она требует серьезных аппа...

15. Особенности работы электронных ламп на СВЧ - Входное сопротивление и потери энергии

Таким образом, источник колебаний в течение всего периода отдает энергию электронам, а они расходуют ее на бомбардировку анода и катода. Приведенное рассмотрение электронных процессов приближенно, но оно дает представление о происходящих явлениях. Точный анализ работы ламп СВЧ слож...

16. Работа с сеточным током и нелинейные искажения

Если сетка не рассчитана для рассеивания на ней мощности, она быстро перегреется, ее конструкция деформируется и воз можно разрушение электронной лампы; • так как входное сопротивление сеточной цепи при наличии сеточного тока становится низким, приложение требуемого напряжения сигнала на сетку требует существенной мощности (Р = VV#), которая должна развиваться предшествующим каскадом усилителя, что требует повышения его мощности по сравнению с работой последующего каскада без сеточного тока; • за счет того, что при наличии сеточного тока, напряжение между сеткой и катодом по большей части периода положительное, то может быть слегка уменьшено напряжение на аноде, так как потребуется меньшее ускоряющее поле, нежели чем при отрицательном напряжении на сетке, тормозящем электронный поток. Коэффициент полезного действия каскада, таким образом, увеличивается, в силу снижения мощности, потребляемой анодной цепью от источника высоковольтного питания. Предоконечные каскады усилителя мощности, работающие в режиме класса А1 являются усилителями напряжения, кот...

17. Источник питания со сглаживающим дросселем

15 Форма напряжения после двухполупериодного выпрямления После двухполупериодного выпрямления, выходное напряжение имеет вид, привеенный на данном рисунке, однако, так как от претерпевает нелинейный процесс выпрямления, набор частот, образующих этот сигнал, отличается от набора частот (фактически одного колебания с частотой 50 Гц), поступающих на вход выпрямителя. Анализ Фурье показывает, что результат выпрямления чисто синусоидального сигнала можно представить в виде суммы высших гармоник: Необходимо учесть, что член υm(RMS) в формуле является напряжением сигнала...

18. Специальные электронные приборы для СВЧ - Пролетный клистрон

Действительно, равномерный электронный поток в тот полупериод колебаний, когда поле в резонаторе ускоряющее, отбирает от резонатора энергию, а во время следующего полупериода отдает такое же количество энергии. В результате не происходит никакой отдачи энергии электронами резонатору. Применим подобные же рассуждения к взаимодействию электронного потока с резонатором Р1. В этот...

     >>>>>     0
!...................
20
!...................
40
!...................
60
!...................
80
!...................
100
!...................
120
!...................
 

 

 

Информация

 

Информация

21.2. Вольт-амперную характеристику тлеющего разряда снимают с помощью схемы на рис. 21.3. В условном графическом обозначении газоразрядных приборов жирная точка показывает наличие газа. Раньше вместо точки делали штриховку. Ионные приборы надо включать последовательно с ограничительным резистором (Rогр). Если его сопротивление очень большое (десятки или сотни мегаом), то при напряжении источника в сотни вольт разряд будет темным, поскольку ток не превысит нескольких микроампер. При значительно меньшем сопротивлении Rогр возникает тлеющий разряд, если напряжение источника не меньше UB. Дальнейшее уменьшение сопротивления Rогр может перевести разряд в дуговой. Это недопустимо для приборов тлеющего разряда, рассчитанных обычно на ток не выше десятков миллиампер. При возникновении дугового разряда ток возрастает во много раз и прибор выходит из строя. Подключение газоразрядного прибора без резистора Rогр к источнику, обладающему достаточным напряжением и малым внутренним сопротивлением, также приведет к возникновению дугового разряда. Ток будет ограничиваться главным образом только внутренним сопротивлением источника, так как сопротивление газоразрядного прибора при дуговом разряде весьма невелико. Произойдет короткое замыкание источника, ток возрастет очень быстро до недопустимо большого значения, и может произойти разрушение газоразрядного прибора. В схеме на рис. 21.3 роль
ограничительног-
о резистора в известной степени выполняет верхний участок переменного резистора R. Но, чтобы в крайнем положении движка прибор не оказался подключенным непосредственно к источнику, необходимо включить еще резистор Rогр. Поскольку газоразрядный прибор и резистор Rorp соединяются
последовательно-
, то напряжение Еа равно сумме напряжений на приборе и резисторе: Еа = Ua + UR. (21.1) Вольт-амперная характеристика прибора с тлеющим разрядом показана на рис. 21.4. По горизонтальной оси отложен ток, а по вертикальной — напряжение, что дает более наглядное представление об изменении напряжения. Конечно, можно поменять оси, расположив их так, как принято для характеристик электронных ламп. При увеличении напряжения от нуля возникает очень слабый ток. Это область темного разряда I. Ток темного разряда очень мал, и масштаб для него иной, нежели для остального графика. Точка А — это точка возникновения тлеющего разряда (точка зажигания). Ей соответствует напряжение UB. Тлеющий разряд возникает, скачком. Минимальный ток, при котором возможен тлеющий разряд, гораздо больше тока темного разряда. Напряжение на приборе также скачком понижается на несколько вольт или даже больше, что объясняется
перераспределен-
ием напряжения Eа между внутренним сопротивление

 
 
Сайт создан в системе uCoz