Содержание

 

 
 

Ослабление поля анода экранирующей сеткой учитывается проницаемостью этой сетки

1. Многоэлектродные и специальные лампы - Характеристики и параметры лучевого тетрода

23), что и для обычных тетродов. В лучевых тетродах проницаемость обеих сеток примерно одинакова, но управляющую сетку делают не очень густой, чтобы лампа имела «левые» анодно-сеточные характеристики. Экранирующая сетка также не очень густая, и коэффициент усиления несколько ниже, чем у обычных тетродов. Внутреннее сопротивление составляет от десятков до сотен килоом. Крутизна получается такой же, как и в других лампах, т.е. единицы — десятки миллиампер на вольт. При переходе от области II в область I анодных характеристик значения S...

2. Трехэлектродные лампы - Параметры

Все сказанное о коэффициенте усиления можно соответственно отнести и к проницаемости D = 1/ μ. Проницаемость характеризует ослабление действия анодного напряжения на катодный ток, т. е. показывает, какую долю действия сетки на катодный ток составляет действие анода. Следовательно, формулу для определения D надо писать так: D = | Δug / Δua | или D = - Δug / Δua при iк = const. (17.18) Если в уравнении (17.16), связывающем параметры, выразить μ через D, то оно примет вид DRiS = 1. (17.19) Значение μ (или D) из характеристик находят по методу двух точек (рис. 17.7). Имея ан...

3. Трехэлектродные лампы - Действующее напряжение и закон степени трех вторых

Ослабление действия анода характеризуется проницаемостью D или коэффициентом усиления μ. Поэтому uа нельзя складывать с uВ, а нужно сначала умножить на D или разделить на μ. Приведенная формула является приближенной. В эквивалентном диоде анодный ток равен катодному току триода, а роль анодного напряжения выполняет действующее напряжение. Поэтому закон степени трех вторых для триода можно написать так: iк = guД3/2 = g(ug+Dua)3/2 (17.3) Учитывая, что в...

4. Конденсаторы - Общие сведения

Любой диэлектрик характеризуется тремя основными параметрами: относительной диэлектрической проницаемостью, электрической прочностью и диэлектрическими потерями. Относительная диэлектрическая проницаемость, εr, которая уже упоминалась выше, и является коэффициентом, на который увеличивается (относительно случая, когда диэлектриком является вакуум) емкость конденсатора после помещения между пластинами нового диэлектрика. Электрическая прочность характеризует максимальную напряженность электрического поля, измеряемую в вольтах на метр, которая может быть приложена к диэлектрику до т...

5. Общие сведения о катушках индуктивности

Относительная магнитная проницаемость, μr, является характеристикой магнитных свойств материала, и можно провести некоторую аналогию с ранее уже упоминавшейся относительной диэлектрической проницаемостью, характеризующей диэлектрические свойства диэлектриков. Относительная магнитная проницаемость имеет различные значения и может меняться от 1 для воздуха до примерно 5500 для железа. Длина магнитопровода отсчитывается по замкнутому контура от какой-то начальной точки, а площадь поперечного сечения магнитопровода просто принимается равной площади сечения магнитного сердечника. Поэтому, может показ...

6. Применение экранированных ламп

Поскольку максимальное число электронов, покидающих участок область управляющей сетки — катода, фиксировано, а проницаемость экранирующей сетки и величины положительных потенциалов на ней и на аноде всего лишь определяет, в какой пропорции ток катода разделяется между анодом и экранирующей сеткой, величины gmc2 и rc2 можно оценить следующим образом: Для рассматриваемого примера, используя анодные характеристики пентода EF86 в триодном включении (!!!), при Va= 108 В, Vc — 1,5 В, га = 14 кОм, находя анодный ток и ток экранирующей сетки, мож...

7. Проволочные резисторы

Проволочные резисторы наматываются подобно катушке дросселя, и даже в случае, когда для керамического сердечника относительная магнитная проницаемость μ ≈ 1 (что делает ее сравнимой с дросселем, не имеющим магнитного сердечника), все равно каждый проволочный резистор имеет индуктивное реактивное сопротивление, величина которого может достигать больших значений по сравнению с активным сопротивлением. Активное сопротивление проводника опред...

8. Неидеальности трансформаторов

В случае малосигнального приближения на характеристике около начала координат имеется перегиб, на котором наклон кривой уменьшен. Так как магнитная проницаемость сердечника пропорциональна наклону кривой, то при малых значениях Н индуктивность первичной обмотки трансформатора (Lp) будет небольшой. На низких частотах уменьшенное значение индуктивности Lp снижает усиление и увеличивает искажения выходного каскада. Ответственными за появление перегиба на характеристике являются отдельные магнитные домены, из которых состоит материал сердечника, и которые обладают некоторой инерционностью при изменении направления их вектора намагниченности. (Точно такой же эффект наблюдается в электростатике, ког...

9. Многоэлектродные и специальные лампы - Устройство и работа пентода

Выражение для действующего напряжения пентода имеет вид uд ≈ ug1 + D1ug2 + D1D2ug3 + D1D2D3ua. (19.11) Проницаемость пентода D = D1D2D3. (19.12) Поскольку значение D мало, а третье слагаемое в выражении (19.11) либо равно нулю, либо очень невелико (так как D1D2 << 1), то действующее и запирающее напряжение выражается так же, как и для тетрода: uд ≈ ug1 + D1ug2 и ug1 зап ≈ — D1ug2 (19.13) Анодно-сеточные характеристики у пентода такие же, как у тетрода, т. е. «левые». Закон степени трех вторых для пентода имеет вид iк = guД3/2, (19.14) где катодный...

10. Режимы работы усилительных приборов. Классы усилителей

4 приведена идеализированная проходная характеристика лампы (считая проницаемость равной нулю). Как видно из рисунка, режим работы усилителя (определяемый формой анодного тока) зависит от напряжения смещения на сетке лампы. В режиме класса А смещение выбирается на середине линейного участка проходной характеристики, благодаря чему анодный ток существует вес...

11. Трехэлектродные лампы - Физические процессы

Баркгаузеном, внесшим большой вклад в теорию электронных ламп, и подчеркивает роль экранирующего действия сетки. Можно сказать, что проницаемость характеризует «пропускную способность» сетки для электрического поля анода. Чем реже сетка, тем легче через нее проникает от анода к катоду электрическое поле и тем больше значение D. Зато коэффициент μ соответственно у...

12. Многоэлектродные и специальные лампы - Параметры тетродов и пентодов

Соотношение μ = S Ri остается в силе. Проницаемость D тетродов и пентодов не равна обратному значению коэффициента усиления, так как определяется при условии постоянства катодного, а не анодного тока: D = — Δug1/ Δua при iк = const, иg2 = const, ug3 = const. (19.23) Вследствие значительной нелинейности...

13. Многоэлектродные и специальные лампы - Устройство и работа тетрода

Она характеризуется произведением проницаемостей сеток, которое называется проницаемостью тетрода D: D = D1D2. (19.1) Величина D показывает, какую долю воздействия напряжения управляющей сетки на катодный ток составляет воздействие напряжения анода. Например, если D = 0,01, это означает, что изменение анодного напряжения на 1 В влияет в 100 раз меньше, нежели такое же изменение сеточного напряжения. Приближенно проницаемость — ...

     >>>>>     0
!...................
20
!...................
40
!...................
60
!...................
80
!...................
100
!...................
120
!...................
 

 

 

Информация

 

Информация

Как видно, электроны летят по сложным
пространственны-
м кривым, которые условно можно назвать винтовыми линиями с переменным радиусом. Чтобы лучше представить себе траекторию электрона, на рис. 20.19 даны проекции траектории на три взаимно
перпендикулярны-
е плоскости. Так как скорость электронов велика, то эти траектории являются лишь небольшой частью одного оборота винтовой линии. Для усиления действия фокусирующую катушку помещают в экран, или панцирь, из мягкой стали (рис. 20.20). Тогда магнитная индукция увеличивается. Магнитодвижущая сила фокусирующей катушки, необходимая для фокусировки, приближенно определяется по формуле FM = I w ≈
240√(Uad/-
l) , (20.9) где d — средний диаметр катушки, см; l — расстояние от катушки до экрана, см; Ua — напряжение анода, кВ; w — число витков катушки; I— ток, А. Обычно число витков составляет несколько сотен или тысяч. Например, при I = 0,1 A, d = 6 см, l =18 см и Ua = 3 кВ магнитодвижущая сила FM = 240 √ 3 • 6/18 = 240 А и w = 240/0,1 = = 2400. Рис. 20.20. Фокусирующие катушки в стальном панцире с широкой (а) и узкой (б) щелью Рис. 20.21. Отклонение электронного луча в магнитном поле катушек При стальном панцире требуется значительно меньшее число витков. Правильная фокусировка достигается регулировкой тока в катушке с помощью переменного резистора. Направление тока в фокусирующей катушке не играет роли. Вместо фокусирующей катушки иногда применяют постоянный магнит в виде кольца с регулировкой фокусировки передвижением магнита вдоль трубки или перемещением магнитного шунта, ответвляющего часть магнитного потока. Для магнитного отклонения электронного луча служат две пары отклоняющих катушек, расположенные под прямым углом друг к другу. На рис. 20.17 для упрощения показана только одна пара катушек Lx с вертикально направленным вектором поля. Это поле отклоняет луч по горизонтали. Другая пара катушек Ly создает поле с горизонтально н

 
 
Сайт создан в системе uCoz