Содержание

 

 
 

лампы бывают генераторными, усилительными, выпрямительными, частотно-преобразовательными, детекторными, измерительными

1. Многоэлектродные и специальные лампы - Краткие сведения о различных типах тетродов и пентодов

Ряд тетродов применяется в качестве мощных модуляторных ламп для импульсной работы и мощных генераторных ламп; лучевые тетроды — для выходных каскадов усилителей низкой частоты, а также для генераторов и передатчиков. Пентоды — наиболее распространенные лампы. Приемно-усилительные пентоды делятся на маломощные — для работы на высоких и низких частотах и более мощные — для работы на низких частотах. Последние также используют в генераторах и передатчиках. Большую...

2. Модели трансформаторов

Использование делителя напряжений на выходе генератора прямоугольных импульсов преследует две цели: • трансформатор необходимо питать от источника с точно таким же сопротивлением, каким обладает головка вместе с проводами звукоснимателя. Стандартные генераторы не обеспечив...

3. Многоэлектродные и специальные лампы - Устройство и работа тетрода

10) Прибор с отрицательным сопротивлением может работать в качестве генератора. Динатронный эффект в тетроде вреден, так как из-за него создаются сильные искажения при усилении. Невыгодно и то, что ток экранирующей сетки больше полезного анодного тока. Может также возникнуть нежелательная паразитная ген...

4. Надежность и испытание электровакуумных приборов

Наименьшую надежность имеют мощные генераторные, модуляторные и усилительные лампы, высоковольтные кенотроны и другие мощные приборы. Высокая надежность и долговечность приборов может быть обеспечена строгим соблюдением правил эксплуатации, изложенных в справочниках. Прежде всего нельзя допускать превышения предельных значений тока, напряжения и мощности, а также температуры, давления и влажности окружающей среды, уровня ударных, вибра...

5. Выбор электронной лампы по критерию низких искажений

К сожалению, ограниченная индуктивность первичной обмотки Lп выходного трансформатора формирует ток самоиндукции в дополнение к току отклоняющей катушки развертки, и это означает, что общий ток необходимый от лампы генератора кадровой развертки искажен по сравнению с идеальным током, требуемым отклоняющими катушками. На практике использовались многие ...

6. Вредное влияние проходной емкости лампы и пути его уменьшения. Эффект Миллера

Наличие такой обратной связи может привести к образованию паразитного автогенератора и, как следствие, к самовозбуждению усилителя. Однако, это явление, как правило, возникает на достаточно высоких частотах, а при усилении звуковых частот практически не сказывается. Имеются разнообразные способы с...

7. Оптимизация характеристик входного трансформатора

Поэтому первоначальные измерения, выполненные с использованием генератора сигналов прямоугольной формы Sowter 8055, не вселили большого оптимизма, однако, использование схемы Зобеля (Zobel), включаемой параллельно вторичной обмотке трансформатора, значительно улучшили положение. Величина емкости, ...

8. Специальные электронные приборы для СВЧ - Лампы бегущей и обратной волны

Первоначальные слабые колебания в генераторной ЛОВ возникают от флюктуации электронного потока, затем эти колебания усиливаются и начинается генерация. Следует заметить, что генерация может возникнуть и в усилительной ЛОВ, если ток пучка в ней превысит некоторое критическое значение. Частота колебаний, генерируемых ЛОВ, зависит от ускоряющего напряжения U. Поэтому возможна электронная перестройка частоты с коэффициентом перекрытия до 2. В генераторных ЛОВ сантиметрового диапазона изменение частоты при перестройке составляет единицы мегагерц на один вольт уск...

9. Многоэлектродные и специальные лампы - Схемы включения тетродов и пентодов

Ток 1g2 создается эмиссией катода. Генератором этого тока является триодная часть лампы, состоящая из катода, управляющей и экранирующей сетки. Если лампа заперта или катод не накален, то ток 1g2 равен нулю. А токи через межэлектродные емкости не представляют собой электронных потоков в вакууме. Например, емкостный ток от источника колебаний через емкости Cg2-g1 и Cg2 существует независимо от того, заперта или отперта лампа, есть эмиссия катода или нет ее. ...

10. Цифровая обработка сигналов

Наилучшие результаты измерения искажений с использованием алгоритма БПФ получаются при синхронизации генератора с системой БПФ, для того чтобы могли записываться только полные циклы без фазовых ошибок, позволяя использовать прямоугольный кадр. Если истинное синхронное БПФ не возможно, то полезный компромисс — это настройка анализатор на основной частоте и подгонка частоты измерительного генератора для получения минимальной «каймы» в окрестностях составляющей с самой...

11. Ограничения по выбору рабочей точки

Cg — разделительный конденсатор, который предотвращает короткое замыкание аккумулятора через генератор, rs — внутренне (выходное) сопротивление генератора. Возвращаясь к выходным статическим характеристикам лампы и нагрузочной линии, обратим внимание, что при сильном увеличении Va, статические характеристик, соответствующие разным сеточным напряжениям становятся существенно нелинейными. Нелинейность становится особенно большой, когда Va приближается к напряжению ВН. Эта область называется областью отсечки (поскольку при приближении Va к ВН анодный ток прекращается — отсекается). При построении линейных усилителей, работа близко...

12. Особенности работы электронных ламп на СВЧ - Основные типы электронных ламп для СВЧ

Принимаются также меры к уменьшению потерь энергии, в частности для баллона используется специальное стекло с малыми диэлектрическими потерями или радиокерамика. В генераторных лампах особое значение приобретает охлаждение анода и лампы в целом, так как из-за больших потерь энергии лампы сильно нагреваются. Лампы дециметрового диапазона, конечно, могут работать на более длинных волнах, но для сантиметровых волн большинство их непригодно. Некоторые из пальчиковых и миниатюрных бесцокольных ламп применяются для генерации и усиления на дециметровых волнах (на частотах в сотни мегагерц)., Для дециметровых и «длинных» сантиметровых волн сконструированы лампы с дисковыми и цилиндри...

13. Электронно-лучевые трубки - Электростатические электронно-лучевые трубки

Для сохранения выбранного п в течение длительного времени применяют синхронизацию генератора развертки исследуемым напряжением. Синхронизация состоит в том, что исследуемое напряжение подводится к генератору развертки и он генерирует пилообразное напряжение с частотой, меньшей в целое число раз, нежели частота исследуемого. Исследуемые напряжения обычно подают на отклоняющие пластины через разделительные конденсаторы (см. рис. 20.2). Поэтому на пластины не попадает постоянная составляющая и наблюдается лишь переменная. Ось времени (нулевая ось) этой составляющей представляет собой ту горизонтальную линию, которая ост...

14. Разработка усилителей мощностью более 10 Вт

Единственным способом получения еще более высокой выходной мощности останется использование мощных генераторных ламп, предназначенных для радиопередатчиков с их зачастую «заоблачной» стоимостью. Применение мощных генераторных ламп имеет свои сложности: • передающие мощные лампы имеют всегда непропорционально высокую стоимость; • для них н...

     >>>>>     0
!...................
20
!...................
40
!...................
60
!...................
80
!...................
100
!...................
120
!...................
 

 

 

Информация

 

Информация

Если нет электронной эмиссии катода, то поле будет однородным. Когда катод испускает большое число электронов, то они в пространстве анод — катод создают отрицательный объемный
(пространственн-
ый) заряд, препятствующий движению электронов к аноду. Наиболее плотный объемный заряд («электронное облачко») вблизи катода (рис. 16.1). За счет объемного заряда электрическое поле становится неоднородным. Возможны два основных режима работы диода. Если поле на всем протяжении от катода до анода ускоряющее, то любой электрон, вылетевший из катода, ускоренно движется на анод. Ни один электрон не возвращается на катод, и анодный ток будет наибольшим, равным току эмиссии. Это режим насыщения. Ему соответствует анодный ток насыщения Is = Ie. (16.1) Второй — режим объемного заряда (точнее, режим ограничения анодного тока объемным зарядом), когда вблизи катода поле является тормозящим. Тогда электроны, имеющие малую начальную скорость, не могут преодолеть тормозящее поле и возвращаются на катод. Электроны с большей начальной скоростью не теряют полностью свою энергию в тормозящем поле и летят к аноду. Рис. 16.1. Объемный электронный заряд в диоде В этом режиме анодный ток меньше тока эмиссии: ia < Ie. (16-2) Наглядное представление о процессах в диоде дают потенциальные диаграммы, показывающие распределение потенциала в пространстве анод — катод (рис. 16.2). По горизонтальной оси откладывают расстояние от катода, а по вертикальной — потенциал, причем положительный принято откладывать вниз. Потенциал катода принимается за нулевой. Когда катод не накален, то объемный заряд отсутствует и поле однородно. Потенциал растет пропорционально расстоянию от данной точки до катода (прямая 1). Если же катод накален, то существует объемный отрицательный заряд, и тогда потенциалы всех точек понизятся, за исключением потенциалов катода и анода, так как анодное напряжение задается внешним источником. Линия распределения потенциала прогнется вверх (кривая 2). Когда объемный заряд небольшой, то во всех точках потенциал остается положительным (кривая 2 находится ниже горизонтальной оси)

 
 
Сайт создан в системе uCoz