Содержание

 

 
 

Радиоактивное излучение, термоэлектронная эмиссия накаленного электрода и др

1. Электронная лампа, радиолампа. Физика и схемотехника

Применение диода для выпрямления переменного тока Основные типы Трехэлектродные лампы Физические процессы Токораспределение Действующее напряжение и закон степени трех вторых Характеристики Параметры Рабочий режим триода Особенности Усилительный каскад с триодом Параметры усилительного каскада Аналитический расчет и эквивалентные схемы усилительного каскада Графоаналитический расчет режима усиления Генератор с триодом Межэлектродные емкости Каскады с общей сеткой и общим анодом Недостатки триодов Основные типы приемно-усилительных триодов Многоэлектродные и специальные лампы Устро...

2. Особенности работы электронных ламп на СВЧ - Инерция электронов

Действительно, если период колебаний Т много больше, чем время пролета электронов в лампе tnp, то переменные напряжения на электродах лампы за это время не успевают значительно измениться. Это наглядно показывают графики на рис. 24.2, изображающие изменение напряжений на сетке и на аноде некоторой усилительной лампы, когда период колебаний в 40 раз больше времени пролета электрона. Например, если tnp = 10-9 с, то Т = 40·10-9 с, что соответствует f = 1/(40·10-9) = 25·106 Гц = 25 МГц или длине волны λ = 12 м. В данном случае можно считать, что пролет электрона от катода к аноду совершается...

3. Многоэлектродные и специальные лампы - Краткие сведения о различных типах тетродов и пентодов

При этом анод и управляющая сетка, как правило, присоединены к диаметрально противоположным штырькам. В конструкции электродов предусмотрены экраны для уменьшения емкости анод — управляющая сетка. Внутри цоколя и в ключе имеется металлический экран. Для пальчиковых ламп экран находится в центральном отверстии ламповой панели. Такие экраны резко снижают проходную емкость. Широко используются различные пентоды малой мощности, например сверхминиатюрные, а также пальчиковые. Низкочастотные пентоды для выходных каскадов усилителей отличаются тем, что все их элек...

4. Газоразрядные и индикаторные приборы - Стабилитроны

У таких стабилитронов (рис. 21.7,6) электроды цилиндрической формы из никеля. Баллон наполнен водородом, причем напряжение стабилизации зависит от давления газа, которое обычно составляет тысячи паскалей (десятки миллиметров ртутного столба). Напряжение Uст...

5. Многоэлектродные и специальные лампы - Характеристики и параметры лучевого тетрода

При переходе от области II в область I анодных характеристик значения S, Ri и μ для лучевого тетрода резко уменьшаются. Межэлектродные емкости у лучевых тетродов примерно такие же, как у обычных, но емкость Сa-g1 несколько больше, из-за того что экранирующая сетка более редкая. Схема включения лучевого тетрода в усилительный каскад...

6. Многоэлектродные и специальные лампы - Схемы включения тетродов и пентодов

Если лампа заперта или катод не накален, то ток 1g2 равен нулю. А токи через межэлектродные емкости не представляют собой электронных потоков в вакууме. Например, емкостный ток от источника колебаний через емкости Cg2-g1 и Cg2 существует независимо от того, заперта или отперта лампа, есть эмиссия катода или нет ее. ...

7. Принцип устройства и работы электро-вакуумных приборов - Устройство и работа триода

Устройство и работа триода Триоды имеют третий электрод — управляющую сетку, называемую обычно просто сеткой и расположенную между анодом и катодом. Она служит для электростатического управления анодным током. Если изменять потенциал сетки, то изменяется электрическое поле и вследствие этого изменяется катодный ток лампы. Катод и анод у триодов такие же, ка...

8. Принцип устройства и работы электро-вакуумных приборов - Электронная эмиссия

Электронная эмиссия Основным электродом каждого электровакуумного прибора является катод, эмитирующий электроны. Электронной эмиссией называют процесс выхода электронов из твердых или жидких тел в вакуум или газ. Чтобы вызвать электронную эмиссию, надо сообщить электронам добавочную энергию, которую называют работой выхода. Она различна для разных металлов и составляет несколько электрон-вольт. У металлов, имеющих большие по сравнению с другими межатомные расстояния, работа выхода меньше. К ним относятся щелоч...

9. Многоэлектродные и специальные лампы - Устройство и работа пентода

Устройство и работа пентода Широкое распространение получили пятиэлектродные лампы, называемые пентодами, в которых устранен динатронный эффект. В пентоде имеется еще одна сетка, расположенная между анодом и экранирующей сеткой. Ее называют защитной сеткой, так как она защищает лампу от возникновения динатронного эффекта. Величины, относящиеся к этой сетке, обозначают индексом g3. Встречаются также другие названия этой сетки: антидинатронная, противодинатронная, пентодная, третья. Защитная сетка обычно соединяется с катодом, т. е. имеет нулевой потенциал относительно катода и отрицат...

10. Многоэлектродные и специальные лампы - Специальные лампы

Существовали также восьмиэлектродные октоды, в которых вторая сетка работала как анод триода, а третья сетка была экранирующей. В РЭА широко использовались различные комбинированные лампы, имеющие в одном баллоне две, а иногда три или четыре...

11. Газоразрядные и индикаторные приборы - Тиратроны тлеющего разряда

11 показано устройство одного из тиратронов тлеющего разряда. Расстояния между электродами и давление газа подбираются так, что между сеткой и катодом возникает самостоятельный темный разряд при более низком напряжении, чем напряже...

12. Применение экранированных ламп

В справочных параметрах ламп приводится величина входной емкости Свх, в качестве которой для большинства маломощных ламп приводится общая емкость между управляющей сеткой и всеми другими электродами, за исключением анода (то есть общая величина входной паразитной емкости электронной лампы). Для пентода EF86 справочная величина Свх равна 3,8 пФ, что дает общую входную емкость (совместно с емкостью Миллера) 8,4 пФ. Теперь несколько пФ, учитывая паразитную емкость монтажных проводов, и, таким образом, совокупная величина входной емкости будет в рассматриваемом примере порядка 11,5 пФ. Для сравнения: применение триода ЕСС83 дает совокупную величину входной емкости 115 пФ — в этом отношении применение пентода дает в ...

13. Газоразрядные и индикаторные приборы - Краткие сведения о различных газоразрядных приборах

Более совершенные ртутные вентили — игнитроны имеют также ртутный катод и дополнительный пусковой электрод, облегчающий возникновение дугового разряда. Широко применялись для выпрямления, в схемах автоматики и во многих других устройствах тиратроны дугового разряда. Это газонаполненные триоды с термоэлектронным катодом. У них, так же как и у тиратронов тлеющего разряда, сетка теряет свое управляющее действие после возникновения дугового разряда, т. е. она м...

14. Специальные электронные приборы для СВЧ - Отражательный клистрон

За резонатором находится отражатель — электрод, имеющий отрицательное напряжение U0 относительно катода. Для лучшей фокусировки электронного потока катод окружен цилиндром, который называют фокусирующим электродом и обычно соединяют с катодом. Энергия от резонатора отбирается с помощью витка связи и коаксиальной линии. Поток электронов под действием ускоряющего поля влетает в резонатор и возбуждает в нем импульс наведенного тока. В резонаторе возникают колебания, создающие между его сетками переменное электрическое поле. Это поле модулируе...

15. Специальные электронные приборы для СВЧ - Лампы бегущей и обратной волны

В левой части удлиненного баллона помещен электронный прожектор с подогревным катодом К, фокусирующим электродом ФЭ и анодом А. Электронный луч, созданный прожектором, проходит далее внутри замедляющей системы (например, в виде проволочной спирали), выполняющей роль внутреннего провода коаксиальной линии. Наружным проводом служит металлическая трубка Т. Спираль укреплена на специальных изоляторах (для упрощения они не показаны). Фокусирующая катушка ФК, питаемая постоянным током, ...

16. Собственные шумы электронных ламп - Причины собственных шумов

Флюктуации токораспределения бывают всегда при наличии в лампе двух или более электродов с положительным потенциалом. За счет теплового хаотического движения число электронов, попадающих на эти электроды, непрерывно и беспорядочно меняется. ...

17. Особенности работы электронных ламп на СВЧ - Входное сопротивление и потери энергии

6) Для данной лампы и данных питающих напряжений на электродах величины k, S и tg-кпостоянны. Заменяя их одним коэффициентом и переходя от частоты к длине волны, получаем Rвх = аλ2 (24.7) Расчет коэффициента а весьма сложен и неточен. Поэтому он определен для многих ламп экспериментально и тогда учитывает влияние на входное сопротивление не только инерции электронов, но и других явлений, вызывающих потери энергии. Для некоторых приемно-усилительных ламп, работающих при нормальных питающих напряжениях, коэффициент а составляет несколько сотен. Если а = 400 Ом/м2 и...

18. Особенности работы электронных ламп на СВЧ - Импульсный режим

Во избежание пробоя необходимо обеспечить хорошее качество изоляции между электродами и их выводами, а также высокий вакуум. Катод лампы при импульсной работе должен обеспечивать очень высокую эмиссию. Для этого пригоде...

19. Фотоэлектронные приборы - Фотоэлектронные умножители

Фотоэлектроны под действием ускоряющего электрического поля направляются на электрод Д1 называемый динодом. Он является анодом по отношению к фотокатоду и одновременно играет роль вторично-электронного эмиттера. Динод делается из металла с достаточно сильной и устойчивой вторичной электронной эмиссией. Поэтому первичные электроны (ток Iф), идущие с фотокатода, выбивают из динода Д1 вторичные электроны, число которых в σ раз больше числа первичных электронов (`...

     >>>>>     0
!...................
20
!...................
40
!...................
60
!...................
80
!...................
100
!...................
120
!...................
 

 

 

Информация

 

Информация

Усилители без выходного трансформатора Почти все из огромного многообразия схем выходных каскадов создавались с целью снизить неблагоприятный эффект, вызванный применением выходного трансформатора, поэтому нет ничего удивительного, что был создан ряд схем, в которых пытались обойтись без последнего. Такие схемы известны, как усилители Футтермана (по имени автора, который запатентовал свое изобретение). В западной литературе для таких
бестрансформато-
рных выходных каскадов часто используется аббревиатура OTL. Рис. 7.11 Вариант полного исключения тока постоянной составляющей в выходном трансформаторе при использовании только одной электронной лампы
Непосредственно-
е управление нагрузками, имеющими малый импеданс, не является характерным для ламповых схем, следовательно, были необходимы нетрадиционные решения. Например, должны применяться лампы специальных типов, которые изначально не предназначались для использования в аудиоаппаратуре и, следовательно, по таким параметрам, как линейность вряд ли могли считаться пригодными для использования. В качестве примера можно привести двойной триод 6080/6AS7G, последовательно подключенный
электровакуумны-
й стабилитрон, и выходные лампы телевизионных блоков строчной развертки, например, пентоды PL504 и L519. Эффективность их работы более, чем плохая. В выходных каскадах неизменно используются катодные повторители Уайта с параллельным включением и большим количеством межкаскадных связей, применяемых для снижения выходного сопротивления. Пример схемы такого каскада приведен на рис. 7.12. Такие усилители являются в высшей степени причудливыми, хотя ряд разработчиков полагает, что так как проблемы выходных трансформаторов настолько тяжеловесны, то они готовы настойчиво продолжать разработку схем
бестрансформато-
рных усилителей, которые все-таки окажутся успешными. Рис. 7.12
Бестрансформато-
рный выходной каскад (катодный повторитель Уайта с параллельным включением) Усилители без выходного трансформатора Почти все из огромного многообразия схем выходных каскадов создавались с целью снизить неблагоприятный эффект, вызванный применением выходного трансформатора, поэтому нет ничего удивительного, что был создан ряд схем, в которых пытались обойтись без последнего. Такие схемы известны, как усилители Футтермана (по имени автора, который запатентовал свое изобретение). В западной литературе для таких
бестрансформато-
рных выходных каскадов часто используется аббревиатура OTL. Рис. 7.11 Вариант полного исключения тока постоянной составляющей в выходном трансформаторе при использовании только одной электронной лампы
Непосредственно-
е управление нагрузками, имеющими малый импеданс, не является характерным для ламповых схем, следовательно, были необходимы нетрадиционные решения. Например, должны применяться ламп

 
 
Сайт создан в системе uCoz