Содержание

 

 
 

Работа ламп ухудшается, если сетка, нагреваясь от накаленного катода, начинает испускать термоэлектроны

1. Принцип устройства и работы электро-вакуумных приборов - Устройство и работа диода

Ток накала обозначают Iн, а напряжение накала, т. е. напряжение между выводами подогревателя (или катода прямого накала), обозначают Uн. Напряжение накала всегда низкое — единицы, реже десятки вольт. Ток накала у маломощных ламп составляет десятки миллиампер, а у мощных — до десятков и даже сотен ампер. Во многих схемах вывод катода соединяют с корпусом (рис. 15.3, а, б) аппаратуры. ...

2. Трехэлектродные лампы - Характеристики

Они учитывают неодинаковость температуры в разных точках катода, неэквипотенциальность поверхности катода прямого накала, эффект Шоттки, дополнительный подогрев катода анодным током, начальную скорость электронов, контактную разность потенциалов, термо-ЭДС, возникающую при нагреве контакта различных металлов, и другие явления. Закон степени трех ...

3. Особенности источников смещения подогревателей ламп, находящихся под повышенным потенциалом относительно корпуса

Так как наиболее частой причиной низкого значения Rhk(hot) является пылевидные или иные частички, образующиеся в колбе в процессе изготовления ламп, то они часто могут выжигаться при увеличении напряжения накала ламп примерно на одну треть и контролем за изменением величины Rhk(hot) без пропускания через лампу анодного тока. Сопротивление начнет падать и в момент, когда из...

4. Специальные электронные приборы для СВЧ - Магнетрон

Для того чтобы не было перекала катода, во время работы магнетрона обычно уменьшают напряжение накала. Кроме того, поверхность катода необходимо делать более прочной, чтобы предотвратить ее разрушение ударами электронов. Более сложным оказывается путь «полезного» электрона Б, попавшего в тормозящее переменное поле резонатора 2. Такой электрон отдает часть своей энергии резонатору и уже не имеет энергии, достаточной для того,...

5. Газоразрядные и индикаторные приборы - Электрический разряд в газах

К приборам несамостоятельного дугового разряда относятся газотроны и тиратроны с накаленным катодом. В ртутных вентилях (экситронах) и игнитронах, имеющих жидкий ртутный катод, а также в газовых разрядниках происходит самостоятельный дуговой разряд. При дуговом разряде плотность тока может доходить до соте...

6. Определение параметров неизвестного трансформатора

Если известно, что усилитель может оказаться подверженным высоковольтным разрядам и дуговым процессам, то возможным решением проблемы (в зависимости от типа усилителя) будет включение в схему резистора, гасящего возникающую дугу, на участке между центральным отводом низковольтного (накального) источника и точкой нулевого потенциала высоковольтного источника. Например, использование (проволочного) резистора марки W/Wc сопротивлением 4,7 кОм и мощностью 6 Вт. Однако «плавающий» низковольтный источник питания может в этом случае вызвать возникновение проблем, связанных с ф...

7. Составление предварительной схемы блока питания

Следовательно, на входе схемы стабилизации напряжения необходимо иметь, по крайней мере, напряжение 8,8 В, чтобы обеспечить на выходе необходимые для накала ламп 6,3 В. Вторичные обмотки трансформаторов имеют тенденцию иметь на своих выводах стандартные значения напряжений, например 6 В или 9 В среднеквадратического значения. Если учесть, что будет использоваться емкостной входной фильтр (фильтрующий дроссель, возможно, потребовал бы выполнения намотки по специальному заказу), то напряжение составит (...

8. Особенности работы электронных ламп на СВЧ - Наведенные токи в цепях электродов

Пусть, например, на анод диода с накаленным катодом подается постоянное напряжение. Тогда от катода к аноду внутри лампы н...

9. Требования к блоку частотной коррекции

Следует признать, что электронные лампы не являются такими же малошумящими, как последние поколения малошумящих операционных усилителей, выполненных на интегральных микросхемах, но осуществляя накал подогревателей, при помощи источников постоянного тока, можно практически полностью снять проблему фона сетевого питания и несколько снизить шум ламп. Пентоды желательно сразу исключить из рассмотрения, однако, к использованию триодов также необходимо будет подходить с некоторой осторожностью. 2. Постоянные значения входного сопротивления и е...

10. Газоразрядные и индикаторные приборы - Индикаторные приборы

Знаковые накалъные вакуумные индикаторы дают синтезированное изображение в виде цифр или букв, составленное из накаленных проволочек (рис. 21.18). В баллоне с вакуумом на теплостойкой изоляционной плате расположены вольфрамовые проволочки (нити накала). Один вывод у них делается общий. Подключение к источнику накала той или иной комбинации проволочек дае...

11. Второй дифференциальный усилитель и ток выходного каскада

Условие неизменности и правильности режима работы дифференциальных усилителей по постоянному току задается источниками постоянного тока и стабилизацией высоковольтного напряжения, катодные повторители охвачены многочисленными обратными связями, а вот выходные лампы оказываются очень чувствительными к изменениям напряжения накала. К счастью, напряжение накала подогревателей ламп типа 13Е1 может составлять 26 В, и в следствие его достаточно большой величины, пара ламп потребляет ток всего в 2,6 А, который может быть стабилизирован достаточно ...

12. Каскод (каскодная схема)

Электронные лампы работали при Vнк = 120 В и имели низкочастотный шум, который устранялся только подключением соответствующих нитей накала к источнику питания 150 В постоянного тока. Имеется понятное нежелание делать это, потому что это означает, что необходимы два или более источника питания нитей накала, один подключен к земле, как обычно, а другой подключен к высокому напряжению. Мы вернемся к этой практической проблеме позже. ...

13. Схема улучшенного источника питания

К сожалению, второй случай был связан с последовательно включенными цепями подогревателей ламп и последствия вызванных им повреждений были просто ужасными; • теоретически не исключается температурный дрейф. При нагреве нити накала вольфрамового подогревателя ее сопротивление возрастает (этот закон справедлив для всех металлов) Так как выделяющаяся мощность Р = I2R, то увеличивающееся сопротивление вызывает увеличение выделяющейся мощности в проводнике. На практике, изменение сопротивления с температурой не столь уж вел...

14. Трехэлектродные лампы - Параметры

Параметры К параметрам триода относится напряжение накала UH и ток накала IН, а также нормальное постоянное анодное и сеточное напряжение и соответствующий им постоянный анодный ток. Важными являются максимальные допустимые параметры: мощность, выделяемая ...

15. Работа с сеточным током и нелинейные искажения

К сожалению, электронные лампы с рамочной сеткой имеют современные, эффективные нити накала, падение напряжения на которых невелико, что может вызывать определенные трудности, если каскаду класса А2 требуется значительный размах сеточного напряжения. Чтобы корректно согласовать каскад класса А2, катод катодного повторителя должен находиться под небольшим положит...

16. Выбор выходного разделительного конденсатора

Более того, на нити накала маломощных ламп (каскадов предварительного усиления) накальное напряжение зачастую подается сразу после включения шнура питания усилителя в сеть, независимо от положения выключателя питания. Теперь нужно выбрать величину емкости разделительного конденсатора. От величины той емкости зависит реактивное сопротивление конденсатора, которое, еще раз напомним, максимально в области низких частот. ...

17. Двухэлектродные лампы - Параметры

Это напряжение накала Uн, ток накала Iн и ток эмиссии катода 1е. Рассмотрим другие параметры. Крутизна (S) показывает, как изменяется анодный ток при изменении анодного напря...

18. Многоэлектродные и специальные лампы - Схемы включения тетродов и пентодов

Если изменяется напряжение накала, анода или управляющей сетки, то изменится ток I g2 0. Тогда изменится падение напряжения на Rg2, а следовательно, и напряжение экранирующей сетки. Более высокую стабильность напряжения экранирующей сетки дает делитель напряжения, состоящий из двух резисторов ...

19. Принцип устройства и работы электро-вакуумных приборов - Особенности устройства электронных ламп

Работа ламп ухудшается, если сетка, нагреваясь от накаленного катода, начинает испускать термоэлектроны. Для устранения этого явления проводники сетки покрывают слоем металла с большой работой выхода, например золота. Чтобы эффективно управлять электронным потоком, сетку располагают очень близко к кат...

     >>>>>     0
!...................
20
!...................
40
!...................
60
!...................
80
!...................
100
!...................
120
!...................
 

 

 

Информация

 

Информация

Эмитирующий электрод при этом называют фотоэлектронным катодом (фотокатодом), а испускаемые им электроны —
фотоэлектронами-
. Начало изучения фотоэлектронной эмиссии относится к 1886 г., когда немецкий ученый Г. Герц заметил, что напряжение возникновения электрического разряда между электродами снижается, если осветить один из этих электродов. Это явление с 1888 г. стал исследовать профессор Московского университета А. Г. Столетов. Он установил важные свойства внешнего фотоэффекта, но не мог его объяснить, так как в то время еще не были известны электроны. Рассмотрим законы и характерные особенности фотоэлектронной эмиссии. 1. Закон Столетова. Фототок Iф, возникающий за счет фотоэлектронной эмиссии, пропорционален световому по току Ф: Iф = SФ, (22.1) где S —
чувствительност-
ь фотокатода, выражаемая обычно в микроамперах на люмен. Если поток Ф монохроматичен, т. е. содержит лучи только одной длины волны, то
чувствительност-
ь называют
монохроматическ-
ой и обозначают Sλ.
Чувствительност-
ь к потоку белого
(немонохроматич-
еского) света, состоящего из лучей с разной длиной волны, называют интегральной и обозначают SΣ. 2. Закон Эйнштейна. Еще в 1905 г. А. Эйнштейн установил, что при внешнем фотоэффекте энергия фотона hv превращается в работу выхода W0 и кинетическую энергию вылетевшего электрона: hv = W0 + 0,5mv2, (22.2) где т и v — масса и скорость фотоэлектрона; v — частота излучения; h — постоянная Планка, равная 6,63 х 10-34 Дж·с. Напомним читателю, что
электромагнитно-
е излучение имеет двойственную природу. С одной стороны, это
электромагнитны-
е волны, характеризуемые длиной λ, и частотой v. А с другой стороны, излучение можно рассматривать как поток частиц — фотонов, обладающих энергией hv. Закон Эйнштейна говорит о том, что энергия фотона hv передается электрону, который затрачивает на выход из фотокатода энергию W0, а разность hv — W0 представляет собой энергию вылетевшего электрона. 3. Для внешнего фотоэффекта существует так называемая красная, или длинноволновая, граница. Если уменьшать частоту излучения v, то при некоторой частоте v0 фотоэлектронная эмиссия прекращается, так как на этой частоте hv0 = W0 и энергия фотоэлектронов становится равной нулю. Частоте v0 соответствует длина волны λ0 = c/v0, где с = 3 • 108 м/с. При v < v0 или λ > λ0 фотоэлектронной эмиссии не может быть, так как hv < hv0, т. е. энергии фотона недостаточно даже для совершения работы выхода. 4. Для фотоэффекта характерна малая инерционность. Фототок запаздывает по отношению к излучению всего лишь на несколько наносекунд. Фотокатоды иногда характеризуются отношением числа фотоэлектронов к числу фотонов, вызвавших эмиссию. Этот параметр получил название квантового выхода электронов. Если бы каждый Эмитирующий элек

 
 
Сайт создан в системе uCoz