Содержание

 

 
 

Даже если выход по постоянному току тщательно отрегулирован (симметрирован) до 0 В, он будет дрейфовать

1. Специальные электронные приборы для СВЧ - Магнетрон

Последний процесс совершается в пространстве дрейфа, где нет электрического и магнитного поля. Рис. 25.13. Вращающееся электронное «облачко» в магнетроне при колебаниях в резонаторах В магнетроне вращающийся электронный поток также подвергается действию переменного электрического поля данного резонатора и за счет этого осуществляется модуляция скорости электронов. Но это поле не однородное, как в клистроне. Поэтому оно меняет не только ско...

2. Рабочий режим

Они могут обладать очень низким уровнем шумов, однако в их схемах требуется применение нескольких источников питания подогревателей, а для усилителя рассогласования в идеале требуется отдельный стабилизированный источник питания для уменьшения дрейфа постоянной составляющей, что еще больше усложняет всю схему. Тем ни менее, ряд разработчиков присягнули на верность ламповым стабилизаторам, но это — дело их профессионал...

3. Специальные электронные приборы для СВЧ - Пролетный клистрон

Электроны движутся в пространстве дрейфа равномерно, и графики их движения будут прямые линии, наклон которых показывает скорость движения. Рассмотрим движение трех электронов, пролетающих через модулятор в моменты времени t1, t2 и t3 Пусть электроны влетают в модулятор с одной и той же скоростью и время их пролета через модулятор много ме...

4. Специальные электронные приборы для СВЧ - Отражательный клистрон

Если, например, увеличить напряжение Up, то скорость электронов возрастет и они должны глубже проникать в пространство дрейфа, т. е. время пролета должно увеличиться. Но при увеличении напряжения Up возрастает напряженность тормозящего поля в пространстве дрейфа, электроны сильнее тормозятся и должны быстрее вернуться, т. е. время пролета должно уменьшиться. Переход к зоне генерации с более высоким номером пут...

5. Параметры цепей, определяющих постоянные времени 3180 мкс, 318 мкс, и проблемы взаимовлияния элементов цепей

А это обеспечивает более благоприятные начальные условия, позволяющие преодолеть с меньшими негативными последствиями влияние дрейфа параметров элементов схемы. ...

6. Ламповый стабилизатор напряжения

Исследования на осциллографе, подключенном с использованием емкостной связи по переменной составляющей, показали, что выходное напряжение медленно дрейфовало взад и вперед относительно значения 420 В из-за изменений напряжения питания цепей подогревателей катодов (для накала использовался нестабилизированный низковольтный источник переменного тока — то есть накал осуществлялся непосредственно от обмотки силового трансформатора). Стабилизатор же на интегральной микросхеме 317 серии оказался непоколебимым, как скала. Пути совершенствования схемы лампового стабилизатора напряжения Нижеследующая идея улучшения стабилизатора была заимствована из осциллографа. В схемах осциллографов присутствует большое количество ...

7. Усилитель класса А для электромагнитных головных телефонов с непосредственной междукаскадной связью

Даже если выход по постоянному току тщательно отрегулирован (симметрирован) до 0 В, он будет дрейфовать. Необходимо средство стабилизации выхода по постоянному току на 0 В, и лучший выход — применить отрицательную обратную связь. Подключим петлю обратной связи параллельно выходу усилителя, но так как...

8. Схема улучшенного источника питания

К сожалению, второй случай был связан с последовательно включенными цепями подогревателей ламп и последствия вызванных им повреждений были просто ужасными; • теоретически не исключается температурный дрейф. При нагреве нити накала вольфрамового подогревателя ее сопротивление возрастает (этот закон справедлив для всех металлов) Так как выделяющаяся мощность Р = I2R, то увеличивающееся сопротивление вызывает увеличение выделяющейся мощности в проводнике. На практике, изменение сопротивления с температурой не столь уж велико и выделяющаяся мощность в большей мере зависит от второй степени протекающего тока, I2, следовательно, стабилизированный по току источник питания имеет более стабильн...

9. Постоянная токовая нагрузка первого дифференциального каскада. Температурная стабилизация

Эта идея основывается на том, что у стабилитрона отсутствует температурный дрейф, и это соответствовало бы действительности, если бы использовался стабилитрон с напряжением стабилизации 6,2 В. Но в рассматриваемой схеме каскада, задающего неизменяющийся ток, использован светоизлучающий диод. Так как прямое падение напряжения светодиода уменьшает...

10. Элементы, повышающие высокочастотную устойчивость. Итоговая схема усилителя

Для второго дифференциального усилителя требуется стабилизатор, не имеющий дрейфа статической характеристики и с напряжением стабилизации 160 В. На эту роль идеально подходит стабилизатор фирмы Maida, выполненного на микросхеме типа 317Т (рис. 7.46), который рассматривался. Хотя рабо...

11. Активные кроссоверы и схема Зобеля

Необходимо точно рассчитать значение сопротивления анодного резистора, провести процесс его старения (приработки) и тщательно выбрать класс изделия для предотвращения дрейфа параметров. Должен использоваться источник, поддерживающий постоянное значение тока, и имеющий максимально возможное выходное сопротивление, а значение паразитной емкости,...

12. Топология схемы: источники питания и их влияние на элементы, задающие постоянную токовую нагрузку

Данное значение просто указывает на недопустимость дрейфа напряжения сеточного смещения. Так как цепи предоконечного каскада усиления непосредственно связаны по постоянной составляющей от сеток выходных ламп до анодов второго дифференциального усилителя, изменения значения их анодного напряжения Va потенциально может не лучшим образом повлиять на работу выходных ламп, так как они по определению работают примерно при максимальной анодной мощности Ра(max) Ра...

     >>>>>     0
!...................
20
!...................
40
!...................
60
!...................
80
!...................
100
!...................
120
!...................
 

 

 

Информация

 

Информация

Однако, приведенной формулой следует пользоваться достаточно осторожно, так как можно предсказать значительное увеличение срока службы за счет существенного снижения рабочего напряжения. Существует хорошее инженерное правило, гласящее, что, если оказывается возможным,
электролитическ-
ий конденсатор должен
эксплуатировать-
ся при напряжении, составляющем две трети от его номинального рабочего значения, что дает теоретическое увеличение срока службы в восемь раз. Этот результат является, скорее всего, предельным значение для применимости данной формулы. Большое количество классических ламповых усилителей содержат
электролитическ-
ие конденсаторы, в которых в одном корпусе конструктивно объединены несколько компонентов. Внешний конденсатор маркируется, как правило, красной точкой и в усилителе, в котором используется сглаживающая RC цепь, такой конденсатор должен быть подключен к точке, имеющей самый высокий положительный потенциал. Причиной этого является то, что в точке с наиболее высоким потенциалом будут самые высокие значения напряжения пульсации, а так как внутри проводника поле отсутствует, эти напряжения не будут иметь связи с соответствующим каскадом. Подключение конденсаторов в схеме в обратной
последовательно-
сти вызовет увеличение фоновых шумов. Существует класс алюминиевых
электролитическ-
их конденсаторов, которые можно использовать в цепях переменного тока, они известны как биполярные конденсаторы. Такие конденсаторы могут быть обнаружены в схемах кроссоверов
громкоговорител-
ей, так как они были, как правило, гораздо дешевле пленочных конденсаторов со сравнимым значением емкости. Конструктивно они представляют два встречно включенных
электролитическ-
их конденсатора (рис. 5.8). Рис. 5.8 Биполярный <

 
 
Сайт создан в системе uCoz