Содержание

 

 
 

Катодный повторитель, чтобы обеспечить низкое выходное сопротивление

1. Анализ работы блока частотной коррекции RIAA

Увеличение коэффициента усиления лампы входного или второго каскада вызовет проблемы, связанные с наличием паразитной емкости Миллера, поэтому единственным практическим путем увеличения усиления (без увеличения количества ламп, приводящих к росту уровня нелинейных искажений) является замена усилителя с общим катодом на оконечный катодный повторитель. Но при этом сразу возникают две новые проблемы: • для оконечного каскада необходимо, чтобы связь на его входе осуществлялась только по переменной составляющей, а это приводит к взаимо...

2. Активные кроссоверы и схема Зобеля

Хотя следует отметить, что первоначальная схема Хеджа не включала катодный повторитель. Расчет отдельных элементов данной схемы был детально проведен, следовательно, нет необходимости тщательно разбирать всю схему, можно ограничиться только некоторыми замечаниями, существенными для ее особенностей в целом. Сам по себе дифференциальный усилитель не является идеальным фазоинвертором, поэтому...

3. Работа с сеточным током и нелинейные искажения

Верхняя лампа также катодный повторитель, и должна иметь высокие значения статического внутреннего коэффициента усиления ц и крутизны gm. Таким образом, лампа типа 6С45П (μ= 52) является очень подходящей. Верхняя электронная лампа имеет высокое полное сопротивление нагрузки, поэтому ее коэффициент усиления равен: Сетка верхнего катодного повторителя связана по переменному току с выходом среднего катодного повторителя, и так как его коэффициент усиления почти единица, на его катоде обеспечивается практически такой же потенциал по перемен...

4. Симметричный предусилитель

Постоянные времени 3180 мкс и 318 мкс объединенных цепей коррекции и связанный с ними катодный повторитель Так как объединение параметров цепей должно быть достигнуто для симметричной работы, величина емкости конденсатора должна делиться пополам, а так как на конденсаторе практически отсутствует падение постоянного напряжения, то становится значительно ...

5. Усилитель класса А для электромагнитных головных телефонов с непосредственной междукаскадной связью

В рассматриваемом усилителе необходим катодный повторитель, чтобы обеспечить низкое выходное сопротивление. Лампы с высокими внутренним статическим коэффициентом усиления т, высокой крутизной проходной характеристики gm подходят...

6. Параметры цепей, определяющих постоянные времени 3180 мкс, 318 мкс, и проблемы взаимовлияния элементов цепей

Например, в схеме осциллографа марки Tektronix катодный повторитель на лампах типа Е88СС/692 имеет входную емкость в диапазоне звуковых частот в промежутке от 1 до 2 пФ. Однако в осциллографах оптимизация ширины полосы пропускания достигается за счет динамического диапазона, поэто...

7. Особенности проектирования усилителей с малыми искажениями

В качестве примера, катодный повторитель на лампе типа 6С45П, смещение которого задавалось приемником неизменяющегося тока на лампе типа EF1...

8. Параллельно управляемый двухламповый усилитель (SRPP)

Неудивительно, что каскад SRPP имеет значительно более высокий перепад выходного напряжения, чем μ-повторитель. μ-повторителю также требуется более высокое напряжение питания, потому что его часть тратится впустую, вызывая падение напряжения на дополнительном сопротивлении RK 10 кОм. Рис. 3.37 С...

9. Катодный повторитель

Это напряжение обеспечивается делителем напряжения R1, R2 за счет общего источника питания ВН. Рис. 3.21 Катодный повторитель с фиксированным напряжением смещения Рис. 3.22 Рабочая точка катодного повторителя с фиксированным напряжением смещения Обратим внимание, что катодная цепь, включая нагрузочный резистор, является общей как для пути протекания входного (сеточного) тока, так и выходного (анодного). Более того,...

10. Выбор верхней лампы для μ-повторителя

Для начала необходимо оценить необходимое сопротивление эквивалентной нагрузки по переменному току для нижней лампы: Максимизирование RH минимизируют искажения, вносимые нижней лампой, но опыт показывает, что при RH > 50rа нет дополнительного выигрыша по этим искажениям, и более полезно учитывать искажения, вносимые верхней лампой. Так как катодный повторитель работает со 100%-ой обратной связью, увеличение μ увеличивает обратную связь и уменьшает искажения. Тем не менее,...

11. Пути достижения заданных требований. Выбор лампы и топологии каскада

2 Идеальные параметрыЕСС82*SN7*N7μ-повторитель, ЕСС82 Av1215,517,517,519 rout,кОм>77,77,87,81 Сn,пФ>5030776035 Характеристики ни одной из приведенных в табл. 8.2 ламп не соответствуют пол...

12. Коэффициент режекции источника питания применительно к отдельным каскадам и устойчивость схемы

К сожалению, МОП полевые транзисторы с р-n переходом обладают также и высоким выходным сопротивлением, зависящим от конкретно используемого типа прибора, поэтому в схему должен быть добавлен эмитерный повторитель на биполярных транзисторах, схема, которая достаточно часто известна, как комбинированная схема на МОП структуре и комбинированном транзисторе, или комбинированная схема МОП структура — пара Дарлингтона. Использование полупроводниковых активных компонентов требует также применения схемы, задающей их рабочие р...

13. β-повторитель

По этой причине повторитель с полевым транзистором не так эффективно уменьшает искажения, как β-повторитель с биполярным транзистором. ...

14. Коэффициент реакции питающего напряжения (PSRR) дифференциальной пары

2 КаскадPSRR С общим катодом Rн = 47 кОм20 ДБ μ-повторитель (rн = 740 кОм)44 дБ Дифференциальная пара rприемника = 1 МОм62 дБ Дифференциальная пара является самой лучшей, и останется лучшей, в том числе и потому, улучшенный источник неизменяющегося тока для μ-повторителя может быть адаптирован и стать улучшенным приемником неизменяющегося тока для дифференциальной пары. Знание коэффициента реакции питающего напряжения дает возможность правильно разрабатывать источники питания, потому что он позвол...

15. Вредное влияние проходной емкости лампы и пути его уменьшения. Эффект Миллера

Как альтернативу, можно поместить между двумя каскадами катодный повторитель (который будет рассмотрен немного позже). С катодным повторителем легко достигается rвых = 1 кОм, поэтому даже с емкостью Миллера в 115 пФ, получаем частоту среза 1,4 МГц. ...

16. Усилители без выходного трансформатора

12 Бестрансформаторный выходной каскад (катодный повторитель Уайта с параллельным включением) ...

17. Схема улучшенного источника питания

Низковольтная часть улучшенного блока питания µ-повторитель, входящий в состав большинства предусилителей (например, блока частотной коррекции фирмы RIA А), должен, без всяких сомнений, питаться от низковольтного источника питания с дополнительным внешним смещением, которое должен быть введен в схему дополнительно к низковольтному напряжению накала. Такая необходимость вызвана тем, что катод одной из ламп μ-повторителя находится под повышенным потенциалом относительно земли. Это приводит к необходимости иметь два различных низковольтных источника питания и использовать...

18. Классическая схема последовательного стабилизатора

Последовательно включенный проходной транзистор представляет собой эмитерный повторитель, отпираемый током от усилителя рассогласования. Напряжение на его эмиттере транзистора составляет 10 В, следовательно, на базе отпертого кремниевого транзистора напряжение составит 10,7 В. Далее...

19. Электронная лампа, радиолампа. Физика и схемотехника

Применение диода для выпрямления переменного тока Основные типы Трехэлектродные лампы Физические процессы Токораспределение Действующее напряжение и закон степени трех вторых Характеристики Параметры Рабочий режим триода Особенности Усилительный каскад с триодом Параметры усилительного каскада Аналитический расчет и эквивалентные схемы усилительного каскада Графоаналитический расчет режима усиления Генератор с триодом Межэлектродные емкости Каскады с общей сеткой и общим анодом Недостатки триодов Основные типы приемно-усилительных триодов Многоэлектродные и специальные лампы Устройство и работа тетрода Устройство и работа пентода Схемы включения тетродов и пентодов Характеристики тетродов и пентодов Параметры тетродов и пентодов Межэлектродные емкости тетродов и пентодов Устройство и работа лучевого тетрода Характеристики и параметры лучевого тетрода Рабочий режим тетродов и пентодов Пентоды переменной крутизны Краткие сведения о различных типах тетродов и пентодов Специальные лампы Электронно-лучевые трубки Общие сведения Электростатические электронно-лучевые трубки Магнитные электронно-лучевые трубки Люминесцентный экран Краткие сведения о различных электронно-лучевых трубках Газоразрядные и индикаторные приборы Электрический разряд в газах Тлеющий разряд Стабилитроны Тиратроны тлеющего разряда Индикаторные приборы Дисплеи Краткие сведения о различных газоразрядных приборах Фотоэлектронные приборы Фотоэлектронная эмиссия Электровакуумные фотоэлементы Фотоэлектронные умножители Собственные шумы электронных ламп Причины собственных шумов Шумовые параметры Особенности работы электронных ламп на СВЧ Межэлектродные емкости и индуктивности выводов Инерция электронов Наведенные токи в цепях электродов Входное сопротивление и потери энергии Импульсный режим Основные типы электронных ламп для СВЧ Специальные электронные приборы для СВЧ Общие сведения Пролетный клистрон Отражательный клистрон Магнетрон Лампы бегущей и обратной волны Амплитрон и карматрон Надежность и испытание электровакуумных приборов Надежность и испытание электровакуумных приборов Основы схемотехники ламповых усилителей Усилитель на триоде с общим катодом Ограничения по выбору рабочей точки Режим в рабочей точке Катодное смещение Выбор величины сопротивления резистора в цепи сетки Выбор выходного разделительного конденсатора Вредное влияние проходной емкости лампы и пути его уменьшения Применение экранированных ламп Каскод (каскодная схема) Катодный повторитель Каскад с общим катодом как приемник неизменяющегося тока Пентоды в качестве приемников неизменяющегося тока Катодный повторитель с активной нагрузкой Катодный повторитель Уайта μ-повторитель Выбор верхней лампы для μ -повторителя Параллельно управляемый двухламповый усилитель (SRPP) β-повторитель Дифференциальная пара (дифференциальный каскад) Коэффициент реакции питающего напряжения (PSRR) дифференциальной пары Полупроводниковые приемники неизменяющегося тока для дифференциальной пары Использование транзисторов в качестве активной нагрузки для электронных л...

     >>>>>     0
!...................
20
!...................
40
!...................
60
!...................
80
!...................
100
!...................
120
!...................
 

 

 

Информация

 

Информация

Анодная характеристика Анодная характеристика диода выражает зависимость анодного тока от анодного напряжения при постоянном напряжении накала. Действительная характеристика (рис. 16.5) отличается от характеристики по закону степени трех вторых, которая изображена штрихами на рисунке. Это различие объясняется тем, что закон степени трех вторых является приближенным, так как при его выводе сделан ряд упрощающих предположений. Начальным током I0 часто пренебрегают и изображают характеристику выходящей из нулевой точки. Рис. 16.6. Определение крутизны диода методом двух точек С увеличением напряжения накала точка А сдвигается влево, так как начальная скорость электронов увеличивается. Средний участок (БВ) характеристики приближенно считают линейным. Участок ВГ соответствует плавному переходу от режима объемного заряда к режиму насыщения. В области насыщения (участок ГД) при повышении анодного напряжения анодный ток растет. Это объясняется эффектом Шоттки и дополнительным нагревом катода от анодного тока. У оксидных катодов эффект Шоттки выражен сильно и дополнительный нагрев от анодного тока значителен, так как сопротивление оксидного слоя большое и анодный ток соизмерим с током накала. Рост анодного тока в режиме насыщения у оксидного катода настолько велик, что переход от режима объемного заряда к режиму насыщения по характеристике обычно установить нельзя. Анодная характеристика Анодная характеристика диода выражает зависимость анодного тока от анодного напряжения при постоянном напряжении накала. Действительная характеристика (рис. 16.5) отличается от характеристики по закону степени трех вторых, которая изображена штрихами на рисунке. Это различие объясняется тем, что закон степени трех вторых является приближенным, так как при его выводе сделан ряд упрощающих предположений. Начальным током I0 часто пренебрегают и изображают характеристику выходящей из нулевой точки. Рис. 16.6. Определение крутизны диода методом двух точек С увеличением напряжения накала точка А сдвигается влево, так как начальная скорость электронов увеличивается. Средний участок (БВ) характеристики приближенно считают линейным. Участок ВГ соответствует плавному переходу от режима объемного заряда к режиму насыщения. В области насыщения (участок ГД) при повышении анодного напряжения анодный ток растет. Это объясняется эффектом Шоттки и дополнительным нагревом катода от анодного тока. У оксидных катодов эффект Шоттки выражен сильно и дополнительный нагрев от анодного тока значителен, так как сопротивление оксидного слоя большое и анодный ток соизмерим с током накала. Рост анодного тока в режиме насыщения у оксидного катода настолько велик, что переход от режима объемного заряда к режиму насыщения по характеристике обычно установить нельзя.

 
 
Сайт создан в системе uCoz