Содержание

 

 
 

В импульсном режиме крутизна достигает сотен миллиампер на вольт

1. Электронная лампа, радиолампа. Физика и схемотехника

Применение диода для выпрямления переменного тока Основные типы Трехэлектродные лампы Физические процессы Токораспределение Действующее напряжение и закон степени трех вторых Характеристики Параметры Рабочий режим триода Особенности Усилительный каскад с триодом Параметры усилительного каскада Аналитический расчет и эквивалентные схемы усилительного каскада Графоаналитический расчет режима усиления Генератор с триодом Межэлектродные емкости Каскады с общей сеткой и общим анодом Недостатки триодов Основные типы приемно-усилительных триодов Многоэлектродные и специальные лампы Устройство и работа тетрода Устройство и работа пентода Схемы включения тетродов и пентодов Характеристики тетродов и пентодов Параметры тетродов и пентодов Межэлектродные емкости тетродов и пентодов Устройство и работа лучевого тетрода Характеристики и параметры лучевого тетрода Рабочий режим тетродов и пентодов Пентоды переменной крутизны Краткие сведения о различных типах тетродов и пентодов Специальные лампы Электронно-лучевые трубки Общие сведения Электростатические электронно-лучевые трубки Магнитные электронно-лучевые трубки Люминесцентный экран Краткие сведения о различных электронно-лучевых трубках Газоразрядные и индикаторные приборы Электрический разряд в газах Тлеющий разряд Стабилитроны Тиратроны тлеющего разряда Индикаторные приборы Дисплеи Краткие сведения о различных газоразрядных приборах Фотоэлектронные приборы Фотоэлектронная эмиссия Электровакуумные фотоэлементы Фотоэлектронные умножители Собственные шумы электронных ламп Причины собственных шумов Шумовые параметры Особенности работы электронных ламп на СВЧ Межэлектродные емкости и индуктивности выводов Инерция электронов Наведенные токи в цепях электродов Входное сопротивление и потери энергии Импульсный режим Основные типы электронных ламп для СВЧ Специальные электронные приборы для СВЧ Общие сведения Пролетный клистрон Отражательный клистрон Магнетрон Лампы бегущей и обратной волны Амплитрон и карматрон Надежность и испытание электровакуумных приборов Надежность и испытание электровакуумных приборов Основы схемотехники ламповых усилителей Усилитель на триоде с общим катодом Ограничения по вы...

2. Специальные электронные приборы для СВЧ - Пролетный клистрон

При импульсной работе частота следования импульсов обычно бывает от десятков до тысяч герц, а длительность импульса — от долей микросекунды до миллисекунд. Пролетные клистроны разделяются на маломощные, средней мощности, мощные и сверхмощные. Мощность в импульсе у них соответственно менее 10 кВт, от 10 кВт до 1 МВт, от 1 до 100 МВт и свыше 100 МВт. Для режима непрерывной работы мощности в 1000 раз меньше. Приведенные значения мощ...

3. Режимы работы усилительных приборов. Классы усилителей

Режим класса АВ Для характеристики длительности той части полупериода, в течение которой протекает анодный ток, радиоинженеры используют термины угловая длительность импульса и угол отсечки. Под угловой длительностью импульса тока понимается часть периода (выраженная в радианах), в течение которой существует анодный ток. Под углом отсечки (наиболее часто применяемом для количественного описания режима работы усилительных приборов) понимается половинное значение этой длительности. Используя данный термины, и учитывая, что полный период гармонических колебаний равен 360°, можно сказать, что для усилителей класса А длительность импульса тока равна ц...

4. Особенности работы электронных ламп на СВЧ - Наведенные токи в цепях электродов

Для упрощения рассуждений рассмотрим случай, когда анодное напряжение представляет собой импульс прямоугольной формы, длительность которого соизмерима с временем пролета. Графики этого...

5. Газоразрядные и индикаторные приборы - Электрический разряд в газах

Обычно в искре наблюдается ряд импульсных разрядов, следующих друг за другом. Искровой разряд используется в разрядниках, служащих для кратковременного замыкания тех или иных цепей. Высокочастотные разряды могут возникать в газе под действием переменного электромагнитного поля даже при отсутствии токоподводящих электродов (безэлектродный разряд). Коронный разряд является самостоятельным и используется в газоразрядных приборах д...

6. Принцип устройства и работы электро-вакуумных приборов - Устройство и работа диода

беспорядочно изменяющихся токов и напряжений, для ограничения электрических импульсов и т. д. Диод имеет два электрода в стеклянном, металлическом или керамическом баллоне с вакуумом. Один электрод — это накаленный катод, служащий для эмиссии (испускания) электронов. Другой электрод. — анод — принимает электроны, испускаемые катодом. Катод и анод вакуумного диода аналогичны эмиттеру и базе полупроводникового диода. Анод притягивает электроны, если он имеет положи...

7. Рабочий режим триода - Каскады с общей сеткой и общим анодом

Катодный повторитель особенно часто применяют при усилении импульсов, так как он вносит мало искажений. ...

8. Проблема сопряжения одного каскада со следующим

В этом случае предыдущее уравнение по-прежнему должно быть верным, поэтому: Напряжение на разделительном конденсаторе в этом случае способно изменяться очень быстро, поскольку теперь он заряжается через низкое полное сопротивление цепи перегруженной сетки. По окончании импульса можно найти напряжение на сетке второй лампы, преобразуя уравнение: Итак, напряжение на сетке —10 В, но при этом на катоде катодным развязывающим конденсатором цепи автосмещения поддерживается +10 В, поэтому суммарное напряжение между сеткой и катодом Vск = — 20 В, и цепь ...

9. Рабочий режим триода - Основные типы приемно-усилительных триодов

Много лет проводились работы по увеличению крутизны с целью улучшения усилительных качеств лампы и уменьшения искажений электрических импульсов, применяемых в телевидении, радиолокации, автоматике. При этом уменьшали расстояние сетка — катод. Так как потенциальный барьер находится очень близко к катоду, то для эффективного управления электронным потоком надо сетку максимально приблизить к потенциальному барьеру. Улучшение технологии производства позволило довести расстояние сетка — катод до десятков микрометров и получить крутизну до нескольких десятков миллиампер на вольт. ...

10. Особенности работы электронных ламп на СВЧ - Входное сопротивление и потери энергии

Пусть на сетку подано переменное напряжение в виде положительных импульсов прямоугольной формы и запирающее напряжение смещения (рис. 24.8, а). При этом напряжение сетки остается все время отрицательным, т.е. элект...

11. Фотоэлектронные приборы - Фотоэлектронные умножители

Их применяют для регистрации световых импульсов, следующих через наносекундные промежутки времени. Кроме того, ФЭУ применяются во многих областях науки и техники — в астрономии, фототелеграфии и телевидении, для измерения малых световых потоков, для спектрального анализа и ...

12. Рабочий режим триода - Усилительный каскад с триодом

Если на сетку придет большой импульс положительного напряжения, например от помехи, то сетка притянет большое число электронов. На ней накапливается значительный отрицательный заряд. При очень большом сопротивлении Rg этот заряд стекает медленно и лампа будет некоторое время в запертом состоянии. Выясним вредное влияние сеточного тока. Предположим, что усилительный каскад работает без отрицательного смещения сетки. Тогда при отрицательной полуволне переменного сеточного напряжения тока сетки нет, источник ИК работает вхолостую и...

13. Типы конденсаторов. Металлические конденсаторы с воздушным диэлектриком

Поэтому, любое напряжение, остающееся на выводах конденсатора после прохождения импульса, вызывает искажения. Музыкальный сигнал состоит из последовательности коротких электрических импульсов, поэтому вполне вероятно, что остаточная поляризация диэлектри...

14. Модели трансформаторов

Как правило, резистор влияет форму переднего фронта импульса, тогда как конденсатор влияет на амплитуду затухающего переходного процесса (или «звона»), накладывающегося на плоскую вершину наблюдаемого импульса. Определение оптимальных положений движков резистора и конденсатора оказывается на практике довольно простым делом. После того, как были установлены оптимальные значения емкости и сопротивления, конденсатор и переменный резистор должны быть очень аккуратно выпаяны...

     >>>>>     0
!...................
20
!...................
40
!...................
60
!...................
80
!...................
100
!...................
120
!...................
 

 

 

Информация

 

Информация

Катодный повторитель с активной нагрузкой Рис. 3.28 Катодный повторитель с активной нагрузкой Особо пытливый читатель, вероятно, заметил, что
сформулированны-
е выше требования к триодному
каскаду-приемни-
ку неизменяющегося тока были сформулированы для его применения в качестве анодной нагрузки катодного повторителя, разработанного ранее. Таким образом, теперь можно объединить эти два каскада, чтобы разработать катодный повторитель с активной нагрузкой, например, такого, как показан на рис. 3.28. Так как величина нагрузки RH катодного усилителя очень большая, коэффициент усиления будет: Коэффициент усиления равен 0,97, что ненамного больше предыдущего, но зато теперь реально получить гораздо меньшие нелинейные искажения усиливаемого аудиосигнала. Возможно сделать прогнозы этих искажений, но это очень сомнительные и заведомо неточные вычисления, поскольку реальные электронные лампы не работают в точном соответствии с математическими уравнениями. Как и в обычном резисторном каскаде усиления, ток управляющей сетки может вызывать в катодном повторителе намного большие искажения, чем ожидаемое. Например, автор испытывал катодный повторитель с автоматическим смещением, используя 6С45П в приемнике неизменяющегося тока и EF184 в качестве усилителя. Для этого повторителя было определено его входное сопротивление, и его относительное уменьшение при подключении источника с внутренним сопротивлением 1 МОм, вместо 5 Ом. К сожалению, входное сопротивление не было таким большим, как
прогнозировалос-
ь. Изменение величины резистора смещения сетки от 150 кОм до 1 МОм не только изменило входное сопротивление и немного изменило 1а (что указывает на существовавший ток управляющей сетки), но также уменьшило искажение при +20 дБ с 0,23% до 0,052%. Уменьшение сопротивления источника питания от 1 МОм до 24 кОм далее уменьшило суммарное значение коэффициента нелинейных искажений от 0,052% до 0,02%. Катодные повторители часто используется как буферные каскады после регуляторов громкости, так как
чувствительност-
ь к сопротивлению источника питания может бы

 
 
Сайт создан в системе uCoz