Содержание

 

 
 

Основные причины выхода из строя трансформаторов

1. Коэффициент режекции источника питания применительно к отдельным каскадам и устойчивость схемы

Операционный усилитель с входным МОП полевым транзистором характеризуется еще более высоким значением частоты сопряжения 1/f не может рассматриваться для использования в низкочастотных трактах. Несмотря на то, что этот шум будет ослаблен за счет влияния анодного сопротивления лампы, он все равно будет давать вклад в шум, который создает специально отобранный малошумящий триод. Для усилителя мощности данный вид шума не представляет проблемы вообще, но для...

2. Проверка работоспособности усилителя

Если у читателя возникнет желание повторить приведенную автором конструкцию, то будет лучше использовать для усилителя два шасси: один для звукового тракта и второй для источника питания, это позволит уменьшить влияние источника питания на собственно усилитель. Выводы Испытания усилителя показали, что его звучание при воспроизведении высококачественной программы на слух воспринимается достаточно комфортно, несмотря на то, что неравенство сопротивления нагрузки расчетному значению вызывает слабо приглушенное воспроизведение нижних частот. Усилитель очень массивен (примерно 6 кг массы на 1 Вт мощности) по сравнению, например, с рассмотренным ниже двухтактным усилителем (1,58 кг массы на 1 Вт мощности) и почти вдвое больше его п...

3. Элементы, повышающие высокочастотную устойчивость. Итоговая схема усилителя

В итоге, масса готового усилителя со всеми источниками питания составила около 40 кг! Причина, по которой усилитель может быть легко модифицирован в стереофонический, заключается в том, что полностью уравновешенная топология звукового тракта приводит усилитель в состояние близкое к нечувствительности к шумам источника питания. Следо...

4. Типы конденсаторов. Металлические конденсаторы с воздушным диэлектриком

Прежде всего, они используются в высокочастотных цепях, хотя находят применение и в низкочастотных трактах. Из-за чисто конструктивных ограничений, связанных с креплением подвижных пластин, (которые хотя и должны находиться ...

5. Трансформаторы. Намагничивание и потери

Электростатические экраны В низкочастотных трансформаторах, используемых в звуковых трактах, емкость между секциями первичной и вторичной обмоток оказывается значительной, так как она дополнительно увеличивается отношением витков в секциях, совершенно аналогично тому, как это происходит в ламповом триоде в соответствии с эффектом Миллера. Проблема может быть решен...

6. Светочувствительные резисторы и регулятор громкости

Иногда доходит до курьеза: часть инженеров, которым кажется, что они знают все и лучше всех, полагают, что это означает, что необходимо просто установить совершенно идентичные органы управления в звуковой тракт каждого канала. Это в корне неверно. Ослабление в таком случае не будет идеально согласовано, поэтому сигнал синфазного шума, например, фон сети питания, не будет ослабляться неодинаково, что приводило бы к преобразованию части такого сигнала в разностный сигнал, к которому любой симметричный усилитель оказывается особенно чувствительным. Наиболее корректным с...

7. Возможности исключения линейного каскада

Выпускаемый промышленностью стандартный магнитофон Studer A80 имеет действительно великолепный лентопротяжный механизм, но чуть не дотягивающую до такого же уровня великолепия электронику звукового тракта. В настоящее время уровень цен делает приобретение такого оборудования вполне доступным, что позв...

8. Определение параметров неизвестного трансформатора

Основные причины выхода из строя трансформаторов, в тракте звуковых частот Трансформаторы относятся к электронным компонентам с наиболее длительным сроком службы, достигающим 40 и более лет. Все же иногда они могут выходить из строя. Обмотки трансформатора выполняются из провода, который может выходить из строя при протекании через него слишком высоких токов, а изоляция провода может оказаться пробитой, если напряжения, приложенные к обмоткам, превысят допустимые значения. Наиболее частым случаем, при котором отказывают выходные трансф...

9. Почему необходимо использовать трансформаторы

Этот фактор довольно часто также становится решающим! Основные критерии выбора трансформаторов Ниже перечисленные критерии применимы только для трансформаторов, используемых в низкочастотных звуковых трактах; требования, предъявляемые к силовым трансформаторам, будут рассмотрены далее. Несмотря на то, что в большинстве случаев любителями собираются стандартные схемы, для которых практически всегда трансформаторы уже рассчитаны, почти наверняка когда-нибудь возникнет необходимость использовать трансформатор промышленного изготовления. Поэтому становится очень важным при заказе подобного трансформатора представить конструкторам возможное большее количество информации, чтобы они смогли произвести правильный выбор конструктивных параметров, наиболее полно удовле...

10. Насыщение сердечника трансформатора

Вне зависимости от того, является ли трансформатор силовым или низкочастотным, используемым в звуковом тракте, сердечники мощных трансформаторов обычно изготавливаются из кремнистой электротехнической стали с ориентированными зернами (GOSS), которая обладает тем преимуществом, что в направлении, совпадающем с плоскостью зерен, плотность магнитного потока может иметь более высокие значения. Традиционные трансформаторы, в которых сердечники набраны из обычных Ш-образных пластин, лишены эт...

11. Типы конденсаторов. Пленочные конденсаторы, изготовленные металлизацией диэлектрика

В аналоговых цепях звуковых трактов они обычно не используются! До настоящего времени рассматриваемые диэлектрики характеризовались значением относительной диэлектрической проницаемости εr < 10, однако для конденсаторов с керамиче...

12. Анализ работы блока частотной коррекции RIAA

Постоянная времени 3,18 мкс, без коррекции, изменяет фазу сигнала на частотах выше 5 кГц, поэтому они не поступают в тракт усиления синхронно с сигналом более низких частот (неодинаковая групповая задержка), а это искажает пере...

13. О межблочных и акустических кабелях

Из него следует, что не нужно зацикливаться на каком-то одном компоненте тракта, т.к. совершенствование его параметров до теоретически идеального уровня, все равно будет ограничено влиянием на звук самого слабого звена тракта. Применительно к кабелям этот вопрос можно рассматривать в том ключе, что использование кабелей максимально возможного качества будет гарантировать, что при совершенствовании тракта не нужно будет возвращаться к вопросу их подбора и замены многократно. Естественным сдерживающим фактором в данном вопросе являются просто заоблачные цены на кабели высокого класса промышленного производства в секторе...

     >>>>>     0
!...................
20
!...................
40
!...................
60
!...................
80
!...................
100
!...................
120
!...................
 

 

 

Информация

 

Информация

Межэлектродные емкости тетродов и пентодов На схеме усилительного каскада с тетродом (рис. 19.8) помимо емкостей Сg1-к, Сa-g1 и Са-к показаны емкость между сетками Сg1-g2, емкость анод — экранирующая сетка Сa-g2 и емкость экранирующая сетка — катод Сg2-к. Входная емкость тетрода в режиме нагрузки Свх.раб = Сg1-к + Сg1-g2 + Сa-g1 (1 + K). (19.24) Рис. 19.8. Схема усилительного каскада с тетродом Проходная емкость Сa-g1 в тетроде составляет малые доли пикофарада. Поэтому значение Сa-g1 (1 + K) гораздо меньше, нежели первые слагаемые. Считают Свх.раб ≈ Сg1-к + Сg1-g2. (19.25) У тетрода входная емкость в режиме нагрузки значительно меньше, чем у триода. Сравним, например, входные емкости для каскада с триодом, имеющего Сg-к = 12 пФ, Сa-g = 6 пФ, K = 20, и каскада с тетродом, у которого Сg1-к = 12 пФ, Сg1-g2 = 10 пФ, Сa-g1 = 0,02 пФ, K = 100. В статическом режиме для триода Свх = Сg-к + Сa-g = 12 + 6 = 18 пФ, для тетрода Свх = Сg1-к + Сg1-g2= 12 + 10 = = 22 пФ; в рабочем режиме для триода Свх.раб = Сg-к + Сa-g (1 + K)=12 + 6·(1 + 20) = 138 пФ, для тетрода Свх.раб ≈ Свх = 22 пФ. Выходная емкость тетрода Свых = Сa-к + Сa-g2, (19.26) что несколько больше, чем у триода (для него было Свых = Сa-к). Пентод имеет десять межэлектродных емкостей. Однако в усилительном каскаде экранирующая и защитная сетки для переменного тока обычно замкнуты с катодом. Поэтому емкости Сg2-к, Сg3-к и Сg2-g3 оказываются замкнутыми накоротко. Входная емкость пентода Свх.раб ≈ Свх = Сg1-к + Сg1-g2 + Сg1-g3. (19.27) Выходная емкость пентода Свых = Сa-к + Сa-g3 + Сa-g2. (19.28) Как правило, эта емкость немного больше, чем у тетрода. Рис. 19.9. Принцип устройства и условное графическое обозначение лучевого тетрода Рис. 19.10. Распределение электронов (а) и потенциала (б) в лучевом тетроде Межэлектродные емкости тетродов и пентодов На схеме усилительного каскада с тетродом (рис. 19.8) помимо емкостей Сg1-к, Сa-g1 и Са-к показаны емк

 
 
Сайт создан в системе uCoz