Содержание

 

 
 

Полупроводниковые стабилитроны

1. Использование транзисторов в качестве активной нагрузки для электронных ламп

44 Дифференциальная пара с полупроводниковой анодной нагрузкой При тестировании в этой схеме был достигнут требуемый дифференциальный размах 7 В амплитуды выходного напряжения на частоте 1 кГц, с нелинейными искаж...

2. Электронно-лучевые трубки - Краткие сведения о различных электронно-лучевых трубках

Изображение еще большего размера можно получить с помощью кванто-скопа, представляющего собой ЭЛТ, у которой вместо обычного экрана так´ называемая матрица полупроводниковых лазеров, возбуждаемых электронным лучом. Широкое применение получили в настоящее время цветные кинескопы. Принцип их работы основан на том, что для получения нужного цвета свечения необходимо осуществить смешение в разном соотношении трех основных цветов: синего, зеленого и красного, так как человеческий глаз имеет светочувствительные элементы трех типов, воспринимающие именно эти три цвета. Экран цветного кинескопа содержит большое количество миниатюрных крупинок люмин...

3. Особенности работы электронных ламп на СВЧ - Импульсный режим

Высокая удельная эмиссия в импульсном режиме объясняется вырыванием большого числа электронов из оксидного слоя под влиянием сильного внешнего электрического поля, которое проникает в этот слой, являющийся полупроводником. Такую эмиссию оксидный катод обеспечивает только при условии, что длительность импульсов не превышает 20 мкс и между ними имеются более продолжительные паузы. Если поддерживать высокую удельную эмиссию более длительное время, то наступает «отравление» оксидного катода, эмиссионный ток быстро падает и восстановление удельной эмиссии возможно только после «отдыха» катода. Помимо оксидных катодов для импульсного режима успешно применяются новые типы катодов: бариево-вольфрамовые (L-катоды), ториево-оксидные, металлокерамические — из смеси тория...

4. Коэффициент режекции источника питания применительно к отдельным каскадам и устойчивость схемы

Другим методом увеличения коэффициента реакции источника питания каждого каскада могло бы оказаться применение индивидуального стабилизатора напряжения для каждого каскада, однако, в силу достаточно высокой стоимости полупроводникового стабилизатора напряжения (например, 317 серии), следовало бы ограничиться только крайне необходимым их количеством. Менее дорогостоящим способом оказалось бы проектирование такого максимально возможного количества каскадов, которые питались бы одним и те...

5. Фотоэлектронные приборы - Фотоэлектронные умножители

Кроме того, ФЭУ применяются во многих областях науки и техники — в астрономии, фототелеграфии и телевидении, для измерения малых световых потоков, для спектрального анализа и т. д. В полупроводниковой электронике нет пока приборов, заменяющих ФЭУ. ...

6. Особенности работы электронных ламп на СВЧ - Наведенные токи в цепях электродов

Тогда некоторое число электронов проводника А, отталкиваемых зарядом проводника Б, уйдет на другой конец проводника А и там возн...

7. Особенности работы электронных ламп на СВЧ - Входное сопротивление и потери энергии

По поверхности металлических проводников проходят значительные токи, вызывающие бесполезный нагрев. Также увеличиваются потери во всех твердых диэлектриках, находящихся под воздей...

8. Варианты применения стабилизатора высоковольтного напряжения

Причина заключается в том, что полупроводниковые стабилизаторы на высокие напряжения характеризуются более высокими уровнями шумов, потому что они вынуждены использоваться в области очень малых токов, чтобы снизить мощность,...

9. Фотоэлектронные приборы - Электровакуумные фотоэлементы

Но их недостатки — невозможность микроминиатюризации и довольно высокие анодные напряжения (десятки и сотни вольт) — привели к тому, что в настоящее время эти фотоэлементы во многих видах аппаратуры заменены полупроводниковыми приемниками излучения. ...

10. Газоразрядные и индикаторные приборы - Тлеющий разряд

В данном случае этот своеобразный «проводник» имеет форму конуса. Если увеличить подводимое напряжение, ток возрастет и пропорционально увеличится рабочая площадь катода. Площадь поперечного сечения газового «проводника» станет бол...

11. Типы конденсаторов. Алюминиевые электролитические конденсаторы

Сопротивление электролита, как проводника, представляет значительную величину, поэтому протравливание первой обкладки на значительную глубину будет увеличивать сопротивление на участке между объемом ...

12. Схема улучшенного источника питания

При нагреве нити накала вольфрамового подогревателя ее сопротивление возрастает (этот закон справедлив для всех металлов) Так как выделяющаяся мощность Р = I2R, то увеличивающееся сопротивление вызывает увеличение выделяющейся мощности в проводнике. На практике, изменение сопротивления с температурой не столь уж велико и выделяющаяся мощность в большей мере зависит от второй степени протекающего тока, I2, следовательно, стабилизированный по току источник питания имеет более стабильные температурные характеристики. Схема стабилизатора тока Как и в предыдущем случае, также хотелось бы иметь возможность задавать для подогревателей ламп режим пониженного энергопотребления,...

13. Электронная лампа, радиолампа. Физика и схемотехника

Применение диода для выпрямления переменного тока Основные типы Трехэлектродные лампы Физические процессы Токораспределение Действующее напряжение и закон степени трех вторых Характеристики Параметры Рабочий режим триода Особенности Усилительный каскад с триодом Параметры усилительного каскада Аналитический расчет и эквивалентные схемы усилительного каскада Графоаналитический расчет режима усиления Генератор с триодом Межэлектродные емкости Каскады с общей сеткой и общим анодом Недостатки триодов Основные типы приемно-усилительных триодов Многоэлектродные и специальные лампы Устройство и работа тетрода Устройство и работа пентода Схемы включения тетродов и пентодов Характеристики тетродов и пентодов Параметры тетродов и пентодов Межэлектродные емкости тетродов и пентодов Устройство и работа лучевого тетрода Характеристики и параметры лучевого тетрода Рабочий режим тетродов и пентодов Пентоды переменной крутизны Краткие сведения о различных типах тетродов и пентодов Специальные лампы Электронно-лучевые трубки Общие сведения Электростатические электронно-лучевые трубки Магнитные электронно-лучевые трубки Люминесцентный экран Краткие сведения о различных электронно-лучевых трубках Газоразрядные и индикаторные приборы Электрический разряд в газах Тлеющий разряд Стабилитроны Тиратроны тлеющего разряда Индикаторные приборы Дисплеи Краткие сведения о различных газоразрядных приборах Фотоэлектронные приборы Фотоэлектронная эмиссия Электровакуумные фотоэлементы Фотоэлектронные умножители Собственные шумы электронных ламп Причины собственных шумов Шумовые параметры Особенности работы электронных ламп на СВЧ Межэлектродные емкости и индуктивности выводов Инерция электронов Наведенные токи в цепях электродов Входное сопротивление и потери энергии Импульсный режим Основные типы электронных ламп для СВЧ Специальные электронные приборы для СВЧ Общие сведения Пролетный клистрон Отражательный клистрон Магнетрон Лампы бегущей и обратной волны Амплитрон и карматрон Надежность и испытание электровакуумных приборов Надежность и испытание электровакуумных приборов Основы схемотехники ламповых усилителей Усилитель на триоде с общим катодом Ограничения по выбору рабочей точки Режим в рабочей точке Катодное смещение Выбор величины сопротивления резистора в цепи сетки Выбор выходного разделительного конденсатора Вредное влияние проходной емкости лампы и пути его уменьшения Применение экранированных ламп Каскод (каскодная схема) Катодный повторитель Каскад с общим катодом как приемник неизменяющегося тока Пентоды в качестве приемников неизменяющегося тока Катодный повторитель с активной нагрузкой Катодный повторитель Уайта μ-повторитель Выбор верхней лампы для μ -повторителя Параллельно управляемый двухламповый усилитель (SRPP) β-повторитель Дифференциальная пара (дифференциальный каскад) Коэффициент реакции питающего напряжения (PSRR) дифференциальной пары Полупроводниковые приемники неизменяющегося тока для дифференциальной пары Использование транзисторов в качестве активной нагрузки для электронных ламп Искажения в усилителях, их измерение, меры по снижению искажений Классификация искажений. Принципы оценки линейных искажений Принципы измерения нелинейных искажений Измерение и интерпретация...

14. Стабилизатор цепи сеточного смещения с регулируемым выходным напряжением

Однако возникает вопрос, каким образом должен работать стабилизатор напряжения, чтобы удовлетворять этим требованиям? Весьма удобным обстоятельством является то, что так как стабилизатор напряжения питает часть схемы усилительного каскада, в которой переменное напряжение сигнала очень велико (вплоть до напряжений 90 В среднеквадратического значения), к стабилизатору могут не предъявляться очень жесткие требования по уровню шумов, поэтому полупроводниковые стабилитроны являются неплохими кандидатами на использование в этом качестве (рис. 6.31). Рис. 6.31 Стабилизатор с регулируемым выходным напряжением, предназначенный для питания цепей смещения ламп Стабилитроны, рассчитанные на более высокие рабочие напряжения, позволяют добиться в схеме лучшей стабилизации напряжения, однако по-прежнему остается в силе требование сохранять между коллектором и эмиттером управляющего транзистора приемлемы...

15. Принцип устройства и работы электро-вакуумных приборов - Термоэлектронные катоды

Сложные катоды могут быть пленочными или полупроводниковыми. К первым относится, например, торированный карбидированный катод. Он представляет собой вольфрамовую проволочку с пленкой тория и с примесью углерода. Активный слой этих катодов трудно разрушить ионной бомбардировкой. Их применяют при анодных напряжениях до 15 кВ. К полупроводниковым относится оксидный катод. В нем на основание из никеля или вольфрама наносится смесь оксидов щелочноземельных металлов — бария,...

16. Трехэлектродные лампы - Характеристики

Для уменьшения этого тока в более мощных лампах проводники сетки делают из металла с большой работой выхода электронов. Ток утечки в цепи сетки обусловлен несовершенством изоляции между сеткой и другими электродами. ...

17. Выбросы тока и демпфирующие элементы

Так как для включения выпрямительного диода напряжение на нем должно превысить некоторое значение (вне зависимости от того, используются ли полупроводниковые выпрямители, или термоэлектронные лампы), то это означает, что необходим некоторый промежуток времени, для того, чтобы значение синусоидального напряжения возросло от нулевого значения до такого, которое было бы равно напряжению включения любого из выпрямляющих диодов. Следовательно, ток, протекающий в трансформаторе, не будет совершенно неизменным по величине, а в некоторые моменты времени он может снижаться даже до нулевого значени...

18. Классическая схема последовательного стабилизатора

27 Схема последовательного стабилизатора напряжения В приведенной схеме использованы полупроводниковые элементы, однако, возможен и ламповый вариант реализации этой схемы, обладающей аналогичными свойствами. Усилитель рассогласования (погрешностей) усиливает разностный сигнал между опорным напряжением и частью выходного напряжения и управляет работой последовательно включенного проходного транзистора таким образом, что выходное напряжение не изменяет своего значения. Работы схемы зависит от действия цепи отрицательной обратной связи. В заключительных разделах уже рассматривалась ситуация, что в условиях, когда действует обратная связь, входное и выходное сопротивл...

19. Ламповый стабилизатор напряжения

37 схема очень напоминает схему двухтранзисторного стабилизатора напряжения и отличается только применением электронных ламп и более высоких напряжений. Полупроводниковый стабилитрон заменен в схеме неоновым газоразрядным стабилитроном, который загорается при напряжении 85 В, что поддерживает напряжение на катоде лампы EF86 постоянным. Напряжение на сетке лампы задается с использованием делителя напряжения....

     >>>>>     0
!...................
20
!...................
40
!...................
60
!...................
80
!...................
100
!...................
120
!...................
 

 

 

Информация

 

Информация

Особенности Рис. 18.1. Схема рабочего режима триода Рабочий режим (режим нагрузки или режим усиления) по старой терминологии называли динамическим, а режим работы без нагрузки — статическим (рис. 18.1). В режиме без нагрузки анодное напряжение лампы равно напряжению анодного источника Еа. Если в этом режиме напряжение сетки изменяется, то изменяется анодный ток, но анодное напряжение постоянно и равно Еа, а анодный ток является функцией только сеточного напряжения. Это позволяет проводить расчеты для данного режима с помощью обычных характеристик и параметров. Но в большинстве случаев применяется рабочий режим, когда нагрузочное сопротивление соизмеримо с внутренним сопротивлением лампы. В рабочем режиме на нагрузке RH получается падение напряжения uR = iaRH, составляющее заметную часть Еа. Поэтому анодное напряжение uа = Еа - uR или uа = Еа - iaRH. (18.1) Для упрощения считаем, что анодный источник не имеет внутреннего сопротивления. Тогда его напряжение не изменяется при изменении тока. Анодное напряжение в рабочем режиме не остается постоянным. Пусть, например, сеточное напряжение увеличивается и от этого возрастает анодный ток. Тогда увеличивается падение напряжения на нагрузке uR и на столько же вольт уменьшается напряжение анода иа, так как сумма этих напряжений равна Еа. При уменьшении напряжения сетки анодное напряжение возрастает. Таким образом, в рабочем режиме анодное напряжение изменяется в противофазе с сеточным напряжением (при активной нагрузке). Если нагрузка имеет реактивный характер, то она создает дополнительный фазовый сдвиг. Изменение анодного напряжения приводит к тому, что анодный ток в рабочем режиме изменяется в меньшей степени, нежели в режиме без нагрузки. Действительно, в режиме без нагрузки анодный ток изменяется только под действием сеточного напряжения, а в рабочем режиме изменение анодного напряжения действует навстречу изменению сеточного напряжения. Влияние сеточного напряжения частично компенсируется
противодействую-
щим влиянием анодного напряжения. Это явление называют реакцией анода. Конечно, полностью действие сеточного напряжения не компенсируется. Перевес всегда на стороне сетки, так как она действует сильнее, чем анод. Рис. 18.3. Работа усилительного каскада с триодом Особенность рабочего режима именно в том, что анодный ток изменяется в результате одновременного и противофазного изменения сеточного и анодного напряжений: ia = f(ug, ua) причем само анодное напряжение зависит от сеточного. Особенности Рис. 18.1. Схема рабочего режима триода Рабочий режим (режим нагрузки или режим усиления) по старой терминологии называли динамическим, а режим работы без нагрузки — статическим (рис. 18.1). В режиме без нагрузки анодное напряжение лампы равно напряжению анодного источника Еа. Если в этом режиме напряжение сетки изменяется, то изменяется анодный ток

 
 
Сайт создан в системе uCoz