Содержание

 

 
 

Отрицательный заряд

1. Критерии выбора силового трансформатора и накопительного (сглаживающего) конденсатора

Это будет оставаться справедливым даже в случае протекания переходных токов с очень высокими значениями, которые могут возникать при первом и последующих циклах заряда при условии, что они при этом не очень значительно меняют величину заряда конденсатора. Единственное условие, которое должно соблюдаться, это то, чтобы конденсатор был бы в состоянии выдержать этот значительный по величине ток. Для того, чтобы соблюсти это условие, у конденсатора должно быть небольшое значение эквивалентного последовательного сопротивления, ESR, и не только на частотах сетевого питания,...

2. Трехэлектродные лампы - Физические процессы

При отрицательном напряжении сетки в пространстве сетка — катод отрицательный заряд сетки создает тормозящее поле, которое противодействует ускоряющему полю, проникающему от анода. Потенциальный барьер у катода повышается, и катодный ток уменьш...

3. Точное определение параметров выходного трансформатора

Для триодного каскада с несимметричным выходом, работающего ниже одностороннего ограничения, основными искажениями являются составляющие второй гармоники, но они включают постоянную составляющую, которую обуславливает накопленный на развязывающем конденсаторе заряд, и которая вызывает сдвиг напряжения смещения от обусловленной ранее статической рабочей точки. Как только приходит большой сигнал, развязывающий конденсатор плавно возвращает лампу в расчетную точку. Время восстановления определяется постоянной времени на част...

4. Составление предварительной схемы блока питания

Если на выходе выпрямителя имеется выпрямленное напряжение синусоидальной формы с амплитудным значением 11,3 В, то это напряжение будет представлять то максимальное значение, до которого накопительный конденсатор, имеющий теоретически бесконечную величину своей емкости, мог бы зарядиться. Конденсатор же с конечным значением емкости будет достигать этого максимального значения напряжения только ...

5. Конденсаторы - Общие сведения

Конденсаторы - Общие сведения Конденсаторы обладают способностью накапливать и сохранять электрический заряд. Заряд сохраняется на двух изолированных друг от друга пластинках конденсатоpa, между которыми приложено внешнее напряжение. Если напряжение между обкладками конденсатора отсутствует, то заряд также отсутствует и принято считать, что конденсатор разряжен. Все конденсаторы, применяемые в элек...

6. Влияние напряжения пульсаций на выходное напряжение

Последний фактически составляет ток, необходимый для полного восстановления заряда на конденсаторе во время каждого полупериода. Чтобы определить величину этого тока, необходимо найти значение угла проводимости, который представляет время, в течение которого диоды остаются во включенном состоянии и одновременно заряжается конденсатор (рис. 6.8). Рис. 6.8 Определение угла проводимости по величине напряжения пульсаций Для определения этой величины надо начать отсчет с момента времени, когда конденсатор полностью заряжен. Так как известно значения напряжения пульсаций, то можно определить абсолютное значение напряжения на конденсаторе...

7. Двухэлектродные лампы - Анодная характеристика

Рост анодного тока в режиме насыщения у оксидного катода настолько велик, что переход от режима объемного заряда к режиму насыщения по характеристике обычно установить нельзя. ...

8. Двухэлектродные лампы - Физические процессы

1) Второй — режим объемного заряда (точнее, режим ограничения анодного тока объемным зарядом), когда вблизи катода поле является тормозящим. Тогда электроны, имеющие малую начальную скорость, не могут преодолеть тормозящее поле и возвращаются на катод. Электроны с большей начальной скоростью не теряют полностью свою энергию в тормозящем поле и летят к аноду. Рис. 16.1. Объемный электронный заряд в диоде В этом режиме анодный ток меньше тока эмиссии: ia < Ie. (16-2) Наглядное представлени...

9. Проблема сопряжения одного каскада со следующим

Единственная цепь для токов заряда и разряда конденсатора, это путь через резистор смещения сетки, но, как уже было рассмотрено ранее, эта цепь имеет постоянную времени 160 мс. Поскольку для изменения заряда конденсатора на 99% от максимального требуется время, равное 5t, — исходное состояние на сетке (нулевое напряжение), не будет восстановлено, пока не пройдет 0,8 с после кратковременной перегрузки. Восстановление режима каскада после перегрузки усложняется тем обстоятельством, что при запертой лампе отсутствует катодный ток, что в свою очередь усложняет разряд развязывающего конденсатора ч...

10. Типы конденсаторов. Металлические конденсаторы с воздушным диэлектриком

Снятие закорачивающей перемычки позволило не разряженным конденсатором передать часть заряда на конденсаторы, расположенные рядом с выводами, в силу чего напряжение на выводах конденсатора возросло. Это явление известно как остаточная поляризация диэлектрика и проявляется более явственно по мере увеличения тангенса угла диэлектрических потерь, tg6. Подача на конденсатор переменного напряжения полностью эквивалентна чередующимся циклам его заряда и разряда. Поэтому, любое напряжение, остающееся на выводах конденсатора после прохожд...

11. Перенапряжения, возникающие при включении схемы

Мгновенное увеличение напряжения от значения 0 В до значения 325 В (первая производная по времени, или скорость нарастания напряжения dV/dt = ∞) на выводах конденсатора вызовет бесконечно большой (с теоретической точки зрения) протекающий ток заряда, который определяется выражением: Однако, если включение произойдет в момент времени, когда напряжение синусоидального сигнала будет равно не амплитудному значению, а нулевому, то несмотря на то, что значение dV/dt для синусоиды будет максимальным для этой точки, оно все же будет иметь какое-то конечное значение, что приведет к некоторому снижению протекающего в конденсаторе зарядного тока. Именно по рассмотренным выше причинам, подавать высокое напряжение следует на лампы с заранее прогретыми катодами. Наличие анодных токов уменьшит бросок тока в конденсаторах, а также предотвратит повышенный износ катодов ламп. Приборы, способные успешно противостоять этим процессам включения, уже известны, чаще всего под названием «включающие реле с н...

12. Основные вопросы, возникающие при выборе конденсатора

Необходимо предположить, что на обкладках конденсатора хранится заряд: Так как заряд Q, площадь А, ε0 и εr являются постоянными величинами, то при изменении расстояния между обкладками конденсатора напряжение на нем должно изменяться. Этот эффект положен в основу работы всех студийных конденсаторных микрофонов. А также вездесущих электретных микрофонов, устанавливаемых в портативные звукозап...

13. Выпрямление переменного тока

Однако, следует отметить, что в ртутных выпрямителях отсутствует процесс накопления заряда, который вызывает превышение значения, или бросок, тока. ВЧ шумы выпрямителей При работе выпрямителя постоянно происходят переключения выпрямляющи...

14. Многоэлектродные и специальные лампы - Устройство и работа лучевого тетрода

За счет более плотных электронных потоков возрастает плотность объемного заряда. Это вызывает понижение потенциала в пространстве между анодом и экранирующей сеткой. Если напряжение анода ниже, чем экранирующей сетки, то в промежутке экранирующая сетка — анод образуется потенциальный барьер для ...

     >>>>>     0
!...................
20
!...................
40
!...................
60
!...................
80
!...................
100
!...................
120
!...................
 

 

 

Информация

 

Информация

Импульсный режим Электронные лампы передатчиков СВЧ во многих случаях работают в импульсном режиме. Например, почти все
радиолокационны-
е передатчики дают импульсы длительностью в единицы и десятки микросекунд, отделенные друг от друга промежутками времени гораздо большей
продолжительнос-
ти (рис. 24.9). При таком режиме работы средняя мощность лампы во много раз меньше мощности импульса. Пусть, например, длительность импульса τи = 10 мкс, его мощность Ри = 100 кВт, а частота следования импульсов f = 200 Гц. Тогда период следования импульсов Т= 1/200 = 0,005 с = 5000 мкс, т.е. в 500 раз больше длительности импульса. Поэтому средняя мощность лампы в 500 раз меньше мощности импульса: Рср = 0,2 кВт. Отношение периода следования импульсов к длительности импульса называют скважностью: Q = Т/τи. (24.9) Следовательно, Pср = Ри /Q = Риτи / Т. (24.10) Иногда применяют величину, обратную скважности и называемую коэффициентом заполнения. Лампы для импульсной работы имеют сравнительно малые размеры анода, так как потери на его нагрев определяются средней мощностью. Импульсы большой мощности получаются при подаче на сетку и анод весьма больших напряжений в течение короткого времени. Анодное напряжение, например, достигает десятков киловольт. Во избежание пробоя необходимо обеспечить хорошее качество изоляции между электродами и их выводами, а также высокий вакуум. Катод лампы при импульсной работе должен обеспечивать очень высокую эмиссию. Для этого пригоден оксидный катод, эмиссия которого в импульсном режиме в десятки раз сильнее, чем в режиме непрерывной работы. В импульсном режиме удельная эмиссия оксидного катода достигает 70 А/см2 и эффективность 10000 мА/Вт, в непрерывном — 0,5 А/см2 и 100 мА/Вт соответственно. Высокая удельная эмиссия в импульсном режиме объясняется вырыванием большого числа электронов из оксидного слоя под влиянием сильного внешнего электрического поля, которое проникает в этот слой, являющийся
полупроводником-
. Такую эмиссию оксидный катод обеспечивает только при условии, что длительность импульсов не превыша

 
 
Сайт создан в системе uCoz