Содержание

 

 
 

При малом анодном напряжении около защитной сетки создается второй потенциальный барьер

1. Катодное смещение

Удобно, что теперь на сетке нулевой потенциал, поэтому больше нет необходимости во входном разделительном конденсаторе (рис. 3.8). Рис. 3.8 Напряжение смещения в цепи катода (катодное смещение) Проанализируем работу каскада с катодным автосмещением подробнее, предполагая, что сеточные токи отсутствуют. Первоначально, пока ток через электронную лампу не течет, не будет и падения напряжения на резисторе катодного смещения, то есть на катоде будет нулевое напряжение. Постоянно нап...

2. Многоэлектродные и специальные лампы - Устройство и работа пентода

Однако и в этих случаях ее потенциал значительно ниже потенциала анода. В дальнейшем будет считать ug3 = 0 Во многих пентодах соединение защитной сетки с катодом делают внутри лампы. Действие защитной сетки состоит в том, что между н...

3. Специальные электронные приборы для СВЧ - Отражательный клистрон

когда на сетке 1 отрицательный потенциал, а на сетке 2 — положительный (такое поле для прямого потока электронов будет ускоряющим). Больше всего энергии электроны отдают в том случае, если они возвращаются в момент, когда напряженность тормозящего по...

4. О межблочных и акустических кабелях

Если оглянуться назад то можно констатировать, что никто из производителей промышленного сектора (не “самодельщиков”), не и попытался сделать доступным своим потребителям весь потенциал записи, заложенный в виниловых пластинках, CD-Audio дисках. То же самое происходит и со стандартами DVD, DVD-A, SAD. На данную нишу рынка претендуют производители, т.н. Hi-End оборудования. Только непонятно, почему реализация заложенных в стандарты характеристик стоит тех несуразных сумм денег, которые просят за подобное оборудование. Причем тенденция такова, что в оборудовании низшей и средней ценовой категории упор сделан на второстепенные вещи, а именно на функциональности. Учитывая стоимость этой категории аппаратуры,...

5. Проблемы смещения по постоянному току

15 Катодное смещение с использованием резистора При отсутствии тока управляющей сетки, ее потенциал по постоянному току равен нулю. Если анодный ток лампы увеличивается, то катодный ток, протекающий через резистор автосмещения RK, также повышается, делая потенциал катода более положительным по отношению к сетке, поскольку на катодном резисторе при протекании тока всегда будет падать определенное напряжение согласно закону Ома. Таким образом, при возрастании анодного тока будет увеличиваться потенциал катода, а поскольку потенциал сетки постоянный и нулевой, то нулевое сеточное напряжение относительно положительного катодного оказывается существенно ниже. ...

6. Расчет значений элементов цепи, определяющей постоянную времени 75 мкс

Дополнительно к этому, катод, подогреватели катода и экранные сетки имеют по переменному току нулевой потенциал и оказываются включенными параллельно этой емкости: Сg1-k-h-s= 3,3 пФ. Помимо этого к полученной емкости надо добавить несколько пикофарад, возникающих за счет внешних паразитных цепей схемы (паразитные емкост...

7. Типы конденсаторов. Алюминиевые электролитические конденсаторы

Нанесение расплавленного цинка при изготовлении обычного конденсатора на боковые кромки фольги, свернутой спиралью, соединяет все точки обкладки эквипотенциальной поверхностью и сводит к минимуму индуктивность ленты. В случае электролитических конденсаторов такой технологический прием использовать невозможно, так как нанесенный ц...

8. Принцип устройства и работы электро-вакуумных приборов - Термоэлектронные катоды

Разные точки поверхности катода прямого накала имеют разные потенциалы, и анодное напряжение для этих точек различно. Поэтому при питании катода переменным током анодное напряжение пульсирует с частотой тока накала. Недостаток ламп с тонкими катодами прямого накала — так называемый микрофонный эффект. Он состоит в том, что внешние толчки вызывают вибрацию катода. Это приводит к пульсациям анодного тока. За счет микрофонного эффекта нередко возникает акустическая генерация. В этом случае звуковые волны от громкоговорителя вызывают механические колебания лампы и соответственно колебания анодного тока, которые после усиления попадают в гром...

9. Ограничения по выбору рабочей точки

При этом нельзя не обратить внимание на еще один важный момент. Когда потенциал сетки становится положительным, часть электронов, оторвавшихся от катода, больше не отталкиваются сеткой, а притягиваются к ней, вызывая сеточный ток. Это уменьшает входное сопротивление электронной лампы, которое при отсутствии сеточного тока стремится к бесконечно большому (поскольку сопротивление входной емкости сетка-катод на звуковых частотах очень велико), и генератор с ненулевым выходным сопротивлением начинает нагружаться (то есть часть входного напряжения начинает падать на внутренн...

10. Катодный повторитель

Более того, от величины выходного (анодного) тока зависит напряжение, падающее на катодном резисторе, а значит и напряжение VCK между сеткой и катодом (поскольку потенциал сетки относительно анода однозначно определяется резистивным делителем). Потенциал же катода относительно земли тем выше, чем больше анодный ток. Рост потенциала катода приводит к запиранию лампы и уменьшению коэффициента усиления, аналогично случаю катодного автосмещения в резисторном каскаде с общим, рассмотренному выше. Таким образом, мы снова имеем дело с отрицательной обратной связью ...

11. Рабочий режим триода - Усилительный каскад с триодом

Если резистора Rg нет, то цепь сетки разомкнута и попадающие на сетку электроны могут зарядить ее до такого отрицательного потенциала, что лампа запирается. А через резистор Rg заряд сетки стекает. Поэтому Rg иногда называют сопротивлением утечки сетки. Резистор Rg должен иметь большое сопротивление, т. е. Rg >> RИК Но чрезмерно большое сопротивление Rg недопустимо. Если на сетку придет большой импульс положительного напряжения, например от помехи, то сетка притянет большое число электронов. На ней накапливается значительный отрицательный заряд. При очень большом сопротивлении Rg этот заряд...

12. Многоэлектродные и специальные лампы - Характеристики тетродов и пентодов

Это объясняется тем, что при малом анодном напряжении около защитной сетки создается второй потенциальный барьер. При иа = 0 почти все электроны не могут преодолеть этот барьер и возвращаются на экранирующую сетку. Ее ток максимален, а на анод попадают лишь электроны со значительными начальными скоростями. Они образуют начальный анодный ток I0. Рис. 19.6. Характеристики пентода для токов анода, экранирую...

     >>>>>     0
!...................
20
!...................
40
!...................
60
!...................
80
!...................
100
!...................
120
!...................
 

 

 

Информация

 

Информация

Рассмотрим законы и характерные особенности фотоэлектронной эмиссии. 1. Закон Столетова. Фототок Iф, возникающий за счет фотоэлектронной эмиссии, пропорционален световому по току Ф: Iф = SФ, (22.1) где S —
чувствительност-
ь фотокатода, выражаемая обычно в микроамперах на люмен. Если поток Ф монохроматичен, т. е. содержит лучи только одной длины волны, то
чувствительност-
ь называют
монохроматическ-
ой и обозначают Sλ.
Чувствительност-
ь к потоку белого
(немонохроматич-
еского) света, состоящего из лучей с разной длиной волны, называют интегральной и обозначают SΣ. 2. Закон Эйнштейна. Еще в 1905 г. А. Эйнштейн установил, что при внешнем фотоэффекте энергия фотона hv превращается в работу выхода W0 и кинетическую энергию вылетевшего электрона: hv = W0 + 0,5mv2, (22.2) где т и v — масса и скорость фотоэлектрона; v — частота излучения; h — постоянная Планка, равная 6,63 х 10-34 Дж·с. Напомним читателю, что
электромагнитно-
е излучение имеет двойственную природу. С одной стороны, это
электромагнитны-
е волны, характеризуемые длиной λ, и частотой v. А с другой стороны, излучение можно рассматривать как поток частиц — фотонов, обладающих энергией hv. Закон Эйнштейна говорит о том, что энергия фотона hv передается электрону, который затрачивает на выход из фотокатода энергию W0, а разность hv — W0 представляет собой энергию вылетевшего электрона. 3. Для внешнего фотоэффекта существует так называемая красная, или длинноволновая, граница. Если уменьшать частоту излучения v, то при некоторой частоте v0 фотоэлектронная эмиссия прекращается, так как на этой частоте hv0 = W0 и энергия фотоэлектронов становится равной нулю. Частоте v0 соответствует длина волны λ0 = c/v0, где с = 3 • 108 м/с. При v < v0 ил

 
 
Сайт создан в системе uCoz