Содержание

 

 
 

Электростатический принцип управления анодным током

1. Почему необходимо использовать трансформаторы

• Является ли трансформатор мощным выходным трансформатором, либо это слаботочный входной или межкаскадный трансформатор? • Какое максимальное напряжение сигнала (мВ), которое будет подаваться на первичную обмотку при наименьшем значении частоты сигнала? Будет ли уровень сигнала меняться в зависимости от частоты? Каков максимальный уровень искажений, который допускается при этих уровнях сигнала и частоты? • Какова величина сопротивления источника сигнала? • Какое будет необходимо значение отношения количества витков первичной обмотки ко вторичной? • Каковы значения шунтирующего вторичную обмотку сопротивления и емкости, которые будут выполнять роль нагрузки? Может ли меняться значение какого-нибудь из этих двух параметров в случае необходимости? • Для работы в каком частотном диапазоне предназначается трансформатор? Не рекомендуется задавать этот параметр в следующем явно завышенном виде (5 Гц — 500 кГц ± 0,1 дБ), просто потому, что трансформатор с такими параметрами является нереальным. • Необходим ли электростатический экран? • Есть ли необходимость помещать трансформатор в экранирующий кожух, изготовленный из магнитного материала с целью уменьшить влияние электромагнитных наводок? • Есть ли какие-нибудь специальные требования, которые необходимо будет учесть проектировщику трансформатора? Если ответом на первый вопрос было «мощный выходной трансформатор», то тогда должны быть наготове ответы на дополн...

2. Особенности проектирования усилителей с малыми искажениями

От величины анодного высоковольтного напряжения сильно зависят малосигнальные параметры статических характеристик лампы, такие как статический внутренний коэффициент усиления р, статическое внутренне сопротивление га и крутизна gm, которые обычно предполагаются неизменяемыми. Таким образом, пока не нужно максимизировать размах напряжения, выбор рабочей точки целесообразно осуществлять только подбором напряжения смещения по критерию отсутствия сеточного тока и отсечке анодного тока. Проблемы отсечки очевидны: высококачественный усилитель должен работать без отсечки анодного тока во всем диапазоне изменения усиливаемого аудиосигнала, то есть в режиме класса. Сеточный ток вызывает намного больше проблем, поско...

3. Катодный повторитель

Ранее мы упоминали, что из всех эквивалентных параметров лампы, внутренний статический коэффициент усиления μ был одним из наиболее устойчивых, тогда как внутреннее статическое сопротивление rа значительно зависит от изменений тока ...

4. Выбор электронной лампы по критерию низких искажений

Поскольку, наиболее жесткие требования по искажениям предъявляются к промежуточным каскадам усилителя, от которых не требуется ни повышенной мощности, ни особо низкого уровня шумов, то от линейных ламп не требуется и особо высокой крутизны. Высокий внутренний статический коэффициент усиления μ лампы может быть также нежелателен, поскольку в усилителях часто предполагается использование неглубокой отрицательной обратной связи, чтобы уменьшить искажения. К сожалению, большинство ламп с низким μ были разработаны для телевизионной кадровой развертки, поэтому их искажения не вн...

5. Работа с сеточным током и нелинейные искажения

Когда анодная нагрузка (резистор или активная нагрузка) велика rH > 50ra, то величина анодного напряжения Va, падающего на лампе, довольно велика, и внутренний статический коэффициент усиления лампы μ практически постоянен. Нелинейная зависимость μ и Va от анодного тока вызвана нелинейност...

6. Усилитель на триоде с общим катодом

Для создания усилителя, в котором отсутствуют подобные искажения, следует выбрать напряжение смещения на сетке или, иначе говоря, рабочую точку, в которой установится такой статический (то есть при отсутствии сигнала на входе) режим, при котором каскад может усиливать как отрицательные, так и положительные полуволны входного сигнала без заметных искажений. ...

7. Определение рабочей точки предоконечного каскада

К сожалению, эти исследования были выполнены задолго до того, как громкоговорители с низким уровнем искажений, такие, например, как полнодиапазонный электростатический громкоговоритель типа Quad ESL57, стали доступны рядовым разработчикам, поэтому правомерность такого утверждения в настоящее время становится еще более спорной. Тем ни менее, слабая локальная обратная связь может быть использована в выходном каскаде, путем подачи выходного напряжения усилителя со вторичной обмотки...

8. Принцип устройства и работы электро-вакуумных приборов - Устройство и работа диода

В этом заключается электростатический принцип управления анодным током. Если потенциал анода отрицателен по отношению к катоду, то поле между анодом и катодом тормозит электроны, вылетающие из катода, и возвращает их на катод. В этом случае катодный и анодный токи равны нулю. Основное свойство диода — способность проводить ток в одном напр...

9. Трансформаторы. Намагничивание и потери

Более важным является то, чтобы края фольгового экрана не имели между собой электрической связи, так как это привело бы к образованию короткозамкнутого витка. Электростатический экран между первичной и вторичной обмотками силовых трансформаторов часто устанавливается по совершенно иным причинам. В случае п...

10. Составление предварительной схемы блока питания

Предпочтительнее было бы использовать стандартный Ш-образный тип силового трансформатора с электростатическим экраном, в котором двухсекционная катушка на сердечнике прямоугольного сечения оказалась бы вполне приемлемым вариантом, так как невозможно изготовить электростатический экран для трансформатора с тороидальным сердечником и намотанными на него обмотками, который имел бы тороидальную форму и не имел бы утечек. Рис. 6.43 Используемая на практике схема стабилизированного ис...

11. Источники питания низкого напряжения и синфазный шум

Несмотря на то, что в большинстве случаев используется электростатический экран между первичной сетевой обмоткой трансформатора и ближайшей вторичной обмоткой, практически невозможно найти подобные экраны, отделяющий друг от друга вторичные обмотки. А этот фактор приобретает очень большое значение, так как высоковольтные выпрямительные диоды генерируют весьма интенсивные по уровню ВЧ шумы при своем переключении, которые в свою очередь легко наводятся в другие обмотки за счет межвитковой и межобмоточной емкостей. В качестве примера мож...

12. Симметричный предусилитель

В трансформаторе 8055 имеется электростатический экран, расположенный между первичной и вторичной обмотками, в силу чего паразитные емкости первичной обмотки относительно земли были уравновешены, что приводило к идеальному ослаблению шума синфазных сигналов. В качестве иллюстрации, демонстриру...

     >>>>>     0
!...................
20
!...................
40
!...................
60
!...................
80
!...................
100
!...................
120
!...................
 

 

 

Информация

 

Информация

Импульсный режим Электронные лампы передатчиков СВЧ во многих случаях работают в импульсном режиме. Например, почти все
радиолокационны-
е передатчики дают импульсы длительностью в единицы и десятки микросекунд, отделенные друг от друга промежутками времени гораздо большей
продолжительнос-
ти (рис. 24.9). При таком режиме работы средняя мощность лампы во много раз меньше мощности импульса. Пусть, например, длительность импульса τи = 10 мкс, его мощность Ри = 100 кВт, а частота следования импульсов f = 200 Гц. Тогда период следования импульсов Т= 1/200 = 0,005 с = 5000 мкс, т.е. в 500 раз больше длительности импульса. Поэтому средняя мощность лампы в 500 раз меньше мощности импульса: Рср = 0,2 кВт. Отношение периода следования импульсов к длительности импульса называют скважностью: Q = Т/τи. (24.9) Следовательно, Pср = Ри /Q = Риτи / Т. (24.10) Иногда применяют величину, обратную скважности и называемую коэффициентом заполнения. Лампы для импульсной работы имеют сравнительно малые размеры анода, так как потери на его нагрев определяются средней мощностью. Импульсы большой мощности получаются при подаче на сетку и анод весьма больших напряжений в течение короткого времени. Анодное напряжение, например, достигает десятков киловольт. Во избежание пробоя необходимо обеспечить хорошее качество изоляции между электродами и их выводами, а также высокий вакуум. Катод лампы при импульсной работе должен обеспечивать очень высокую эмиссию. Для этого пригоден оксидный катод, эмиссия которого в импульсном режиме в десятки раз сильнее, чем в режиме непрерывной работы. В импульсном режиме удельная эмиссия оксидного катода достигает 70 А/см2 и эффективность 10000 мА/Вт, в непрерывном — 0,5 А/см2 и 100 мА/Вт соответственно. Высокая удельная эмиссия в импул

 
 
Сайт создан в системе uCoz