Содержание

 

 
 

В приборах О-типа постоянное магнитное поле отсутствует или применяется только для фокусировки электронного потока

1. Применение экранированных ламп

Величина тока экранирующей сетки оказывает существенное влияние на величину анодного тока (поскольку между анодом и этой сеткой осуществляется перераспределение электронного потока, испускаемого катодом), что сказывается на режим работы каскада. В большинстве ламповых каскадов (за исключением особых режимов работы мощных ламп радиопередатчиков) в нормальном режиме работы величина тока экранирующей сетки должна составлять около четверти от величины анодного тока. Резистор RC2, включается для того, чтобы воспрепятствова...

2. Специальные электронные приборы для СВЧ - Магнетрон

Для противофазных колебаний очень сильна индуктивная связь между резонаторами, за счет того что магнитный поток из одного резонатора переходит в соседние резонаторы (см. рис. 25.8). Магнетроны, как правило, работают с этим типом колебаний, и приняты меры для того, чтобы такие колебания возбуждались как можно легче. С этой целью применяют связки, т. е. соединяют провод...

3. Выходной каскад класса А с несимметричным выходом

Это становится возможным благодаря тому, что трансформатор запасает энергию магнитного потока в своем сердечнике, вызывая ЭДС самоиндукции. Теоретически для идеальной электронной лампы допустимый размах амплитуд Va может составлять от нуля вольт до удвоенного значения высокого напряжения, что является очень привлекательной чертой для их применения в усилителях мощности; • с некоторым приближением, значение сопротивления нагрузки по...

4. Рабочий режим

В силу этого использование трансформатора, рассчитанного на мощность 30 Вт, могло бы оказаться вполне достаточным, однако, автор остановил свой выбор на трансформаторе с мощностью 50 Вт, так как последний имел практически такую же стоимость, но при этом обеспечивал меньшую плотность магнитного потока в сердечнике и меньший поток рассеяния, что в свою очередь, снижало наведенные шумы в расположенных рядом цепях схемы. Требования к трансформатору и дросселю высоковольтного источника питания Для питания схемы m-повторителя блока частотной коррекции RIAA (напомним, что в качестве примера рассматривается блок питания именно этой аппаратуры) было необходимо напряжение 390 В и ток, примерно равный 80 мА. Для этих целей вполне подходил трансформатор, имеющий вторичную обмотку со средней точкой и напряжениями 525 — 0 —...

5. Многоэлектродные и специальные лампы - Устройство и работа лучевого тетрода

Поэтому не получаются достаточно плотные электронные потоки и не создается потенциальный барьер для вторичных электронов. Достоинство лучевых тетродов — уменьшенный ток экранирующей сетки (не более 7 % анодного). ...

6. Принцип устройства и работы электро-вакуумных приборов - Особенности устройства электронных ламп

Особенности устройства электронных ламп Анод лампы принимает на себя поток электронов. Происходит электронная бомбардировка анода, от которой он нагревается. Кроме того, анод нагревается от теплового излучения катода. В установившемся режиме количество теплоты, выделяющееся на аноде, равно количеству теплоты, отводимому от анода. Важно, чтобы анод не нагревался выше предельной температуры. При перегреве из анода могут выделяться газы, и тогда ухудшается вакуум. Возможно даже расплавление анода от чрезмерного перегрева. Кроме того, раскале...

7. Специальные электронные приборы для СВЧ - Общие сведения

В приборах О-типа постоянное магнитное поле отсутствует или применяется только для фокусировки электронного потока. А для приборов М-типа характерно наличие так называемых скрещенных, т.е. взаимно перпендикулярных, постоянных элек...

8. Электронно-лучевые трубки - Магнитные электронно-лучевые трубки

Питание прожектора осуществляется так же, как в электростатической трубке, но при этом не требуется регулировки анодного напряжения для целей фокусировки. Расходящийся поток электронов подается из прожектора в магнитное поле фокусирующей катушки ФК, которая питается постоянным током. На рисунке она показана в разрезе. Возможна магнитная фокусировка длинной или короткой катушкой. В первом случае поток электронов проходит однородное магнитное поле внутри длинной катушки (рис. 20.18) и электронные траектории являются винтовыми линиями. Если электроны выходят из точки Б на оси катушки, то после к...

9. Многоэлектродные и специальные лампы - Специальные лампы

Лампы с вторичной эмиссией имели дополнительный электрод — вторичноэмиссионный катод, или динод, на который подавался положительный потенциал меньший, чем на анод. Поток первичных электронов ударял в динод и создавал в несколько раз больший поток вторичных электронов, летящих к аноду. Крутизна возрастала до сотен миллиампер на вольт. Оригинальными явились...

10. Особенности работы электронных ламп на СВЧ - Входное сопротивление и потери энергии

Далее он продолжает возрастать, достигая максимального значения в момент t3, когда электронный поток дойдет до сетки. Электроны на сетку не попадают, а пролетают сквозь нее и движутся к аноду. Этот удаляющийся от сетки поток электронов создает в проводе сетки наведенный ток i2, противоположный по направлению току i1 Будет также индуцироваться ток ia в проводе анода, равный току i2. Возрастающий ток i2 в момент t4 имеет некоторое среднее значение и достигает максимального в момент t5, когда весь промежуток анод — сетка заполняется движущимися электронами. До момента t6 оба тока i1 и i2 постоянны и равны друг другу, а в момент t6 лампа зап...

11. Выбор электронной лампы по критерию низких искажений

Проблема размагничивания ламп Направление электронного потока в лампах определяется прежде всего электрическим полем анода, но всегда нужно помнить, что электроны также могут быть отклонены магнитными полями. Магнитное поле земли довольно слабое, так что маловероятно, что ориентировка лампы в любом конкретном направлении повлияет на искажения, но многие электроды ламп часто делаются из никеля, который может легко намагнититься. Если конструкция лампы выполнена из концентрических цилиндрических электродов, магнитные отклонения не имеют значения, разве только они заставят часть электронов ...

     >>>>>     0
!...................
20
!...................
40
!...................
60
!...................
80
!...................
100
!...................
120
!...................
 

 

 

Информация

 

Информация

21.12, а). Если увеличить, или уменьшить положительное напряжение сетки, то она притянет к себе из плазмы больше или меньше электронов и по-прежнему действие ее заряда будет
нейтрализоватьс-
я соответственно изменившимся зарядом электронной оболочки. А если дать на сетку отрицательное напряжение, то она притянет из плазмы положительные ионы, которые создадут вокруг нее положительно заряженный слой (ионную оболочку), нейтрализующий действие отрицательного заряда сетки (рис. 21.12, б). Электронная (или ионная) оболочка сетки находится в динамическом состоянии. Так, например, ионы, коснувшись отрицательно заряженной сетки, отнимают от нее электроны и превращаются в нейтральные атомы, но на смену им к сетке притягиваются из плазмы новые ионы. Если увеличить отрицательное напряжение сетки, то она притянет больше ионов. Заряд ионной оболочки увеличивается и снова полностью компенсирует действие отрицательного заряда сетки. Иначе можно сказать, что поле, создаваемое зарядом сетки, сосредоточено между сеткой и ее ионной (или электронной) оболочкой, как между обкладками конденсатора. Это поле не проникает через оболочку, поэтому не может влиять на ток анода. Рис. 21.12. Электронная и ионная оболочка сетки Рис. 21.13. Включение тиратрона тлеющего разряда в качестве реле Рис. 21.14. Схема и график работы генератора пилообразного напряжения с тиратроном Схема включения тиратрона тлеющего разряда в качестве реле показана на рис. 21.13. Напряжение анодного источника Еa должно быть меньше UВmax а напряжение Еg — меньше того, которое необходимо для возникновения разряда в промежутке сетка — катод. Резистор Rg ограничивает сеточны

 
 
Сайт создан в системе uCoz