Содержание

 

 
 

Газоразрядными (ионными) называют электровакуумные приборы с электрическим разрядом в газе или парах

1. Собственные шумы электронных ламп - Причины собственных шумов

Флюктуации ионных токов наблюдаются при недостаточном вакууме. Чем хуже вакуум, тем больше ионов и тем сильнее сказывается этот вид флюктуации. 4. Флюктуации токораспределения бывают всегда при наличии в лампе двух или более электродов с положительным потенциалом. За счет теплового хаотического движения число электронов, попадающих на эти электроды, непрерывно и беспорядочно меняется. ...

2. Специальные электронные приборы для СВЧ - Магнетрон

Анод сделан в виде массивного медного блока. Вакуумное пространство между катодом и анодом называется пространством взаимодействия. В толще анода размещается четное число, например восемь, резонаторов, представляющих собой цилиндрические отверстия, соединенные щелью с пространством взаимодействия. Щель выполняет функцию конденсатора. На ее поверхностях образуются переменные электрические заряды, а в самой щели возникает электрическое поле. Индуктивностью резонатора служит цилиндрическая поверхность отверстия, ...

3. Выбор величины сопротивления резистора в цепи сетки

Ток ионного разряда всегда имеет место, потому что в электронной лампе всегда имеется остаточный газ (идеальный вакуум обеспечить невозможно). Молекулы остаточного газа находятся в постоянном хаотическом движении, называемом броуновским движением, которое определяет равномерное распределение отдельных молекул газа внутри объема баллона электронной лампы. Таким образом, довольно велика вероятность нахожд...

4. Трехэлектродные лампы - Характеристики

Ионный ток наблюдается в лампах с недостаточным вакуумом. Электроны на пути к аноду сталкиваются с атомами газа и ионизируют их. Положительные ионы движутся к отрицательно заряженной сетке и отбирают от нее электроны, превращаясь в нейтральные атомы. Сетка расходует электроны, но эта убыль пополняется благодаря источнику сеточного напряжения, и на сетке поддерживается отрицательный потенциал. В цепи сетки проходит ток в ...

5. Фотоэлектронные приборы - Электровакуумные фотоэлементы

Электровакуумные фотоэлементы Электровакуумный (электронный или ионный) фотоэлемент представляет собой диод, у которого на внутреннюю поверхность стеклянного баллона нанесен фотокатод в виде тонкого слоя вещества, эмитирующего фотоэ...

6. Увеличение максимально допустимого обратного напряжения VRRM при последовательном включении выпрямительных диодов

Схема задержки включения высоковольтного напряжения В самом начале ламповые выпрямители рассматривались в качестве примера плавного включения ламповых электронных схем (поскольку разогрев вакуумных диодов — кенотронов требует определенного времени). Однако ламповые выпрямители являются дорогостоящими. В отличие от них схемы с использованием полупроводниковых выпрямителей проще, но они обычно подают высоковольтное напряжение в ламповую схему до того, как последняя оказывается подготовленной к работе. Как и прежде, для того, чтобы плавно подать напряжение питания на высо...

7. Принцип устройства и работы электро-вакуумных приборов - Электронная эмиссия

Электронной эмиссией называют процесс выхода электронов из твердых или жидких тел в вакуум или газ. Чтобы вызвать электронную эмиссию, надо сообщить электронам добавочную энергию, которую называют работой выхода. Она различна для разных металлов и составл...

8. Усилители без выходного трансформатора

В качестве примера можно привести двойной триод 6080/6AS7G, последовательно подключенный электровакуумный стабилитрон, и выходные лампы телевизионных блоков строчной развертки, например, пентоды PL504 и L519. Эффективность их работы более, чем плохая. В выходных каскадах неизменно используются катодные повторители Уайта с параллельным включением и большим количеством межкаскадных связей, применяемых для снижения выходного сопротивления. Пример схемы такого каскада приведен на рис. 7.12. Такие усилители являются в высшей степени причудливыми, хотя ряд разработчиков полаг...

9. Многоэлектродные и специальные лампы - Схемы включения тетродов и пентодов

А токи через межэлектродные емкости не представляют собой электронных потоков в вакууме. Например, емкостный ток от источника колебаний через емкости Cg2-g1 и Cg2 существует независимо от того, заперта или отперта лампа, есть эмиссия катода или нет ее. ...

10. Газоразрядные и индикаторные приборы - Тиратроны тлеющего разряда

Сетка в тиратроне обладает более ограниченным действием, нежели в электронных электровакуумных триодах. В последних, изменяя напряжение сетки, можно полностью управлять анодным т...

11. Металлизированные пленочные резисторы

Барабан помещается в рабочую камеру высоковакуумной распылительной установки, которую упрощенно можно представить в виде большой электронной лампы. Электронная пушка установки эмитирует пучок электронов, обладающих высокой энергией, которые ...

12. Общие сведения о катушках индуктивности

Эта зависимость может быть приближенно выражена следующим соотношением: в котором L — индуктивность, μ0 — магнитная проницаемость вакуума, в системе СИ равна 4π·10-7 Гн/м, μr — относительная магнитная проницаемость магнитного материала сердечника, А — площадь поперечного сечения магнитопровода, I — длина магнитопровода, N — количество витков катушки. Отно...

13. Принцип устройства и работы электро-вакуумных приборов - Особенности устройства электронных ламп

Лампу помещают в переменное магнитное поле, индуцирующее в электродах вихревые токи, которые разогревают металл. Для улучшения вакуума в лампу помещают газопоглотитель (геттер), например кусочек магния или бария. При разогреве лампы указанным выше индукционным способом газопоглотитель испаряется и после охлаждения оседает на стекле баллона, покрывая его зеркальным слоем (магний) или коричневато-черным (барий). Этот слой поглощает газы, которые могут выделиться и...

14. Электронно-лучевые трубки - Магнитные электронно-лучевые трубки

Но зато магнитное отклонение позволяет упростить конструкцию трубки (поскольку фокусирующая катушка или фокусирующий магнит устанавливается снаружи трубки, а не монтируется внутри в вакууме) и дает возможность отклонять луч на очень большие углы. Это приводит к значительному уменьшению длины трубок даже при больших размерах экрана. При магнитном отклонении отсутствуют также рассмотренные искажения изображений. Следует, однако, отме...

15. Газоразрядные и индикаторные приборы - Индикаторные приборы

Некоторые из них относятся к газоразрядным приборам тлеющего разряда, но существуют и электронные электровакуумные индикаторы. Разработаны и используются также полупроводниковые индикаторные приборы. Неоновые лампы применяются в качестве индикаторов напряжения и для других целей. Они представляют собой приборы тлеющего разряда, работающие в режиме аномального...

16. О межблочных и акустических кабелях

Ведь кабель, как готовое изделие, является системой, а не идеальным проводником помещенном в вакууме. Не претендую на истинное понимание причин, по которым нам приходится учитывать влияние кабелей на звук. Пусть этим занимаются более подготовленные люди. Для нас главн...

17. Фотоэлектронные приборы - Фотоэлектронные умножители

Фотоэлектронные умножители Фотоэлектронный умножитель (ФЭУ) представляет собой электровакуумный прибор, в котором электронный фотоэлемент дополнен устройством для усиления фототока за счет вторичной электронной эмиссии. Впервые в мире ФЭУ были изобретены советским и...

18. Принцип устройства и работы электро-вакуумных приборов - Общие сведения, классификация

Если электроны движутся в пространстве свободно, не сталкиваясь с оставшимися после откачки газа молекулами, то говорят о высоком вакууме. Электровакуумные приборы делятся на электронные, в которых течет чисто электронный ток в вакууме, и ионные (газоразрядные), для которых характерен электрический разряд в газе (или парах). В электронных приборах ионизация практически отсутствует, а давление газа менее 100 мкПа (высокий вакуум). В ионных приборах д...

19. Газоразрядные и индикаторные приборы - Электрический разряд в газах

Электрический разряд в газах Газоразрядными (ионными) называют электровакуумные приборы с электрическим разрядом в газе или парах. Как правило, газ в таких приборах находится под пониженным давлением. Электрический разряд в газе — это совокупность явлений, сопровождающих прохождение электрического тока через газ (или пар). При таком разряде протекает несколько основных процессов. Возбуждение атомов. При возбуждении атома под ударом электрона один из электронов атома переходит на более удаленную от ядра орбиту, т. е. на более высокий энергетический уровень. Такое возбужденное состояние ат...

     >>>>>     0
!...................
20
!...................
40
!...................
60
!...................
80
!...................
100
!...................
120
!...................
 

 

 

Информация

 

Информация

Необходимость этого очевидна из рис. 19.12, на котором даны рабочие характеристики пентода для различного сопротивления нагрузки RН1, RН2 и RН. На каждой характеристике указана рабочая точка (T, T1 и Т2), соответствующая сеточному смещению Еg1 = — 4 В, и рабочий участок (А1Б1, А2Б2 и АБ), соответствующий переменному напряжению сетки с амплитудой 4 В. Рис. 19.12. Усиления колебаний с помощью пентода при различном сопротивлении нагрузки Если сопротивление нагрузки RН1 велико, то рабочий участок А1Б1 получается сравнительно небольшим. Следовательно, малы амплитуды переменных составляющих анодного тока и напряжения. Полезная мощность также мала. В данном режиме получаются большие искажения. Положительная и отрицательная полуволны переменных составляющих анодного тока и напряжения резко неодинаковы. Если сопротивление нагрузки RН2 мало, то длина рабочего участка А2Б2 увеличивается. Амплитуда переменного анодного тока будет большой, но амплитуда переменного напряжения невелика. Полезная мощность стала больше (площадь треугольника мощности увеличилась), но она не максимальна, и опять получаются искажения (отрезок Т2А2 больше, нежели Т2Б2). Можно подобрать наивыгоднейшее (оптимальное) сопротивление RH, при котором рабочая точка делит рабочий участок пополам. Тогда искажения станут наименьшими. Такому значению RH соответствует рабочая характеристика, у которой отрезки ТА и ТБ равны. Теперь обе полуволны усиленного напряжения имеют одинаковые амплитуды и значение UmR намного больше, чем в предыдущих случаях. Возросла и полезная мощность (увеличилась площадь треугольника мощности). Оптимальная рабочая характеристика идет гораздо круче, нежели статические характеристики. Это означает, что сопротивление RH значительно меньше Ri. Для большинства пентодов и лучевых тетродов оптимальное нагрузочное сопротивление RH = (0,05 … 0,2) Ri. (19.29) Ориентировочно считают, что сопротивление RH должно быть равно примерно 0,1 Ri. При отклонении RH от оптимального значения полезная мощность уменьшается, хотя и нерезко, и увеличиваются искажения. Наивыгоднейшую рабочую характеристику определяют подбором положения линейки, вращаемой вокруг точки М, в которой uа = Еа. Надо установить линейку так, чтобы получить равные отрезки ТА и ТБ. После этого значение RH находят делением Еа на значение тока, соответствующее точке пересечения рабочей характеристики с осью ординат. Если сопротивление нагрузки RH велико только для переменной составляющей, а для постоянного тока очень мало (например, в усилителе с трансформатором или резонансным контуром), то рабочие характеристики для различных RH пересекаются в рабочей точке Т, а не в точке М. Для определения наивыгоднейшего режима в данном случае линейку вращают вокруг точки Т до положения, при котором оба отрезка рабочего участка будут одинаковы. Рис. 19.13. Получение различного усиления пр

 
 
Сайт создан в системе uCoz