Содержание

 

 
 

Поверхностный флюктуационный эффект особенно резко проявляется у оксидных катодов

1. Особенности работы электронных ламп на СВЧ - Импульсный режим

Высокая удельная эмиссия в импульсном режиме объясняется вырыванием большого числа электронов из оксидного слоя под влиянием сильного внешнего электрического поля, которое проникает в этот слой, являющийся полупроводником. Такую эмиссию оксидный катод обеспечивает только при условии, что длительность импульсов не превышает 20 мкс и между ними имеются более продолжительные паузы. Если поддерживать высокую удельную эмиссию более длительное время, то наступает «отравление» оксидного катода, эмиссионный...

2. Двухэлектродные лампы - Рабочий режим. Применение диода для выпрямления переменного тока

Максимальное допустимое значение тока для диодов с оксидным катодом обусловлено разрушением оксидного слоя. Для каждого типа диодов характерен максимальный допустимый импульс анодного тока Iamax В диодах для импульсной работы значение Iamax весьма велико, тем больше, чем меньше длительность импульсов и чем больше паузы между ними. Пульсирующий анодный ток диодов имеет постоянную составляющую Ia ср, которую называют постоянным выпрямленным током. Важным параметром диода является максимальный допустимый постоянный выпрямленный ток Ia срmax. При работе диода в выпрямителе в течение некоторого времени (часть периода) к диоду приложено о...

3. Специальные электронные приборы для СВЧ - Магнетрон

Катод в большинстве случаев применяется оксидный подогревный с большой площадью поверхности. На торцах катода расположены диски, препятствующие движению электронов вдоль оси. Анод сделан в виде массивного медного блока. Вакуумное пространство между катодом и анодом называется пространст...

4. Выбор величины сопротивления резистора в цепи сетки

Во-первых, всегда бывает небольшое технологическое загрязнение сетки оксидным покрытием, используемым для формирования эмиссионной поверхности катода, что вызывает незначительную эмиссию электронов с поверхности сетки. Второй, более существенной причиной, является наличие так называемого тока ионного разряда. Рассмотрим подробнее это явление. Ток ионного разряда всегда имеет место, потому что в электронной лампе всегда имеется остаточный газ (идеальный вакуум обеспечить невозможно). Молекулы остаточного газа находятся в постоянном хаоти...

5. Электронно-лучевые трубки - Люминесцентный экран

Наиболее часто применяемые люминофоры имеют следующие свойства. Оксид цинка дает фиолетовое или зеленое свечение и обладает коротким послесвечением, что необходимо для осциллографии. Различные смеси сернистого цинка и сернистого кадмия дают яркое свечение любого цвета, в частности белого, с послесвечением от долей микросекунды до минут. Для визуального наблюдения служат люминофоры из искусственного или естественного (минерал виллем...

6. Трехэлектродные лампы - Характеристики

Для ламп с активированным, например оксидным, катодом катодный ток в режиме насыщения возрастает почти так же, как в режиме объемного заряда. Если при этом ток сетки растет медленнее, чем катодный ток, то характеристика для анодного тока имеет подъем. Если же сеточный ток растет быстрее, чем катодный, то анодный ток умен...

7. Двухэлектродные лампы - Анодная характеристика

У оксидных катодов эффект Шоттки выражен сильно и дополнительный нагрев от анодного тока значителен, так как сопротивление оксидного слоя большое и анодный ток соизмерим с током накала. Рост анодного тока в режиме насыщения у оксидного катода настолько велик, что переход от режима объемного заряда к режиму насыщения по характеристике обычно установить нельзя. ...

8. Особенности работы электронных ламп на СВЧ - Основные типы электронных ламп для СВЧ

Иногда поверхность электродов несколько выгнута. Вывод от подогревного оксидного катода сделан в виде цилиндра, причем он одновременно служит и выводом одного конца подогревателя. Второй конец подогревателя имеет вывод внутри этого цилиндра. Вывод от сетки сделан также в форме цилиндра и является частью баллона лампы. Рис. 24.11. Внешний вид и устройств...

9. Газоразрядные и индикаторные приборы - Индикаторные приборы

Прозрачный электрод 2 обычно сделан из оксида олова и является сплошным, а электрод 4 имеет форму цифр, или букв, или сегментов для получения синтезированных знаков или геометрических фигур. Электрод 4 может быть растровым, состоящим из ряда полос, или матричным — с большим числом точечных элементов. Индикаторы эти бывают различных типов и размеров, дают светящееся изображение на темном фоне или темное изображение на светящемся ...

10. Принцип устройства и работы электро-вакуумных приборов - Термоэлектронные катоды

При коротких импульсах катод почти не подвергается ионной бомбардировке, и поэтому допустимо анодное напряжение 10-20 кВ. Помимо оксидных катодов в последнее время применяются сложные катоды новых типов: ториево-оксидные, синтерированные {губчатые) и др. Катоды прямого накала представляют собой проволоку или ленту. Достоинство таких катодов — простота устройства и возможность их изготовления для самых маломощных ламп на ток накала 10 мА и меньше. Катод в виде тонкой проволоки после включения накала быстро разогревается (за время менее 1 с), что весьма удобно. Недостаток...

11. Особенности источников смещения подогревателей ламп, находящихся под повышенным потенциалом относительно корпуса

Следует помнить, что увеличение напряжения питания подогревателей катодов может легко повредить катод с оксидным покрытием, однако, если у лампы были плохие характеристики, то терять особо нечего; * если величина постоянного напряжения, приложенного к изоляции катод-подогреватель, который имеет высокие токи утечки, будет минимальной, то и токи утечки станут минимальными, а с ними уменьшатся и шумы. Например, возможен случай, когда необходимо применение двух низковольтных и...

12. Газоразрядные и индикаторные приборы - Дисплеи

В качестве электрохромного вещества чаще всего применяют триоксид вольфрама WO3. Его пленка под напряжением приобретает синий цвет. Для этого требуется напряжение всего лиш...

     >>>>>     0
!...................
20
!...................
40
!...................
60
!...................
80
!...................
100
!...................
120
!...................
 

 

 

Информация

 

Информация


Токораспределен-
ие При положительном напряжении сетки наблюдается
токораспределен-
ие, т. е. распределение катодного тока между сеткой и анодом. Если напряжение анода выше напряжения сетки, то часть электронов попадает на сетку, а электроны, пролетевшие сквозь сетку, летят к аноду. Такой режим называют режимом перехвата. В этом режиме ток сетки значительно меньше анодного. Если же напряжение сетки выше напряжения анода, то многие электроны, пролетевшие сквозь сетку, в пространстве сетка — анод тормозятся, снижают до нуля продольную составляющую скорости и возвращаются на сетку. Подобный режим называют режимом возврата. При uа = 0 и иg > 0 между сеткой и анодом возникает скопление электронов и второй потенциальный барьер. Почти все электроны, «проскочившие» сквозь сетку, возвращаются на нее, так как не могут преодолеть второй потенциальный барьер. Поэтому при uа = 0 ток сетки имеет максимальное значение. Лишь сравнительно небольшая часть электронов преодолевает второй потенциальный барьер и попадает на анод, создавая начальный анодный ток. Если на анод подано положительное напряжение, то второй потенциальный барьер понижается, его преодолевает больше электронов и анодный ток возрастает. Скопление электронов в области второго потенциального барьера образует вместе с анодом систему, подобную диоду. На это скопление электронов действует ничем не ослабленное поле анода, и уже при небольших положительных анодных напряжениях ток анода резко возрастает, а ток сетки резко падает, поскольку все меньше электронов возвращается на сетку. При некотором положительном анодном напряжении второй потенциальный барьер настолько понижается, что уже ни один электрон не возвращается на сетку. Наступает режим перехвата. Дальнейшее увеличение анодного напряжения по-прежнему

 
 
Сайт создан в системе uCoz