Содержание

 

 
 

К полупроводниковым относится оксидный катод

1. Металлизированные пленочные резисторы

Затем к торцевым колпачкам привариваются луженые медные выводы, после чего резистор закрывается защитной эпоксидной пленкой. Последней операцией является нанесение на резистор маркировки. Далее будет показано, что любые отклонения или наруш...

2. Особенности работы электронных ламп на СВЧ - Основные типы электронных ламп для СВЧ

Иногда поверхность электродов несколько выгнута. Вывод от подогревного оксидного катода сделан в виде цилиндра, причем он одновременно служит и выводом одного конца подогревателя. Второй конец подогревателя имеет вывод внутри этого цилиндра. Вывод от сетки сделан также в форме цилиндра и является частью баллона лампы. Рис. 24.11. Внешний вид и устройство металлокерамического генераторного триода 1 — штифт для навинчивания радиатора анода; 2 — анод; 3 — сетка; 4 — катод; 5 — подогреватель; 6 — вывод сетки; 7 — вывод катода и подогревателя; 8 — вывод подогревателя Анод и...

3. Электронно-лучевые трубки - Электростатические электронно-лучевые трубки

Вывод катода иногда совмещен с одним выводом подогревателя. Оксидный слой нанесен на донышко катода. Вокруг катода располагается управляющий электрод, называемый модулятором (М), цилиндрической формы с отверстием в донышке. Этот электрод служит для управления плотностью электро...

4. Трехэлектродные лампы - Характеристики

Для ламп с активированным, например оксидным, катодом катодный ток в режиме насыщения возрастает почти так же, как в режиме объемного заряда. Если при этом ток сетки растет медленнее, чем катодный ток, то характеристика для анодного тока имеет подъем. Если же сеточный ток растет быстрее, чем катодный, то анодный ток уменьшается. Чем гуще сетка и чем меньше анодное напряжение, тем сильнее нарастает сеточный ток. С большим положительным напряжением сетки работают только генераторные и импульсные лампы. У приемно-усилительных ламп сеточное напряжение обычно...

5. Надежность и испытание электровакуумных приборов

Причины постепенных отказов заключаются в постепенных необратимых изменениях оксидного катода, приводящих к ослаблению эмиссии, в утечках между электродами, выделении газов из электродов и т. д. Для электронных ламп характерна интенсивность отказов 10-5 ч-1 и менее. Для обычных ламп и ламп с повышенной надежностью и долговечностью интенсивность отказов различается примерно в 5 — 10 раз, а иногда и больше. Наименьшу...

6. Собственные шумы электронных ламп - Причины собственных шумов

Поверхностный флюктуационный эффект особенно резко проявляется у оксидных катодов. 2. Флюктуации вторичной электронной эмиссии электродов лампы, находящихся под положительным потенциалом, а также различных изоляторов и стекла баллона также играют роль в создании собственных шумов. 3. Флюктуации ионных токов наб...

7. Особенности источников смещения подогревателей ламп, находящихся под повышенным потенциалом относительно корпуса

Следует помнить, что увеличение напряжения питания подогревателей катодов может легко повредить катод с оксидным покрытием, однако, если у лампы были плохие характеристики, то терять особо нечего; * если величина постоянного напряжения, приложенного к изоляции катод-подогреватель, который имеет высокие токи утечки, будет минимальной, то и токи утечки станут минимальными, а с ними уменьшатся и шумы. Например, возмо...

8. Двухэлектродные лампы - Анодная характеристика

Это объясняется эффектом Шоттки и дополнительным нагревом катода от анодного тока. У оксидных катодов эффект Шоттки выражен сильно и дополнительный нагрев от анодного тока значителен, так как сопротивление оксидного слоя большое и анодный ток соизмерим с током накала. Рост анодного тока в режиме насыщения у оксидного катода настолько велик, что переход от режима объемного заряда к режиму насыщения по характеристике обычно установить нельзя. ...

9. Фотоэлектронные приборы - Фотоэлектронная эмиссия

Так, например, широко применяемый оксидноцезиевый фотокатод, состоящий из серебра, оксида цезия и чистого цезия, имеет уменьшенную работу выхода, и для него λ0 = 1,1 мкм. Рис. 22.1. Спектральные характеристики фотокатода Чувствительность фотокатода зависит от длины волны излучения. Эта зависимость S=f(λ) называется спектральной характеристикой и может быть двух видов (рис. 22.1). Кривая 1 соответст...

10. Двухэлектродные лампы - Рабочий режим. Применение диода для выпрямления переменного тока

Максимальное допустимое значение тока для диодов с оксидным катодом обусловлено разрушением оксидного слоя. Для каждого типа диодов характерен максимальный допустимый импульс анодного тока Iamax В диодах для импульсной работы значение Iamax весьма велико, тем больше, чем меньше длительность импульсов и чем больше паузы между ними. Пульсирующий анодный ток диодов имеет постоянную составляющую Ia ср, которую называют постоянным выпрямленным током. Важ...

11. Специальные электронные приборы для СВЧ - Магнетрон

Катод в большинстве случаев применяется оксидный подогревный с большой площадью поверхности. На торцах катода расположены диски, препятствующие движению электронов вдоль оси. Анод сделан в виде массивного медного блока. Вакуумное пространство между катодом и анодом называется пространством взаимодействия. В толще анода размещается четное число, например восемь, резонаторов, представляющих собой цилиндрические отверстия, соединенные щелью с пространством взаимодействия. Щель выполняет функцию конденсатора. На ее поверхностях образуются переменные электрические заряды, а в самой щели возникает электр...

12. Многоэлектродные и специальные лампы - Устройство и работа лучевого тетрода

Кроме того, поверхность катода, находящаяся против держателей сеток, не покрывается оксидным слоем и поэтому не эмитирует. За счет более плотных электронных потоков возрастает плотность объемного заряда. Это вызывает понижение потенциала в пространстве между анодом и экранирующей сеткой. Если напряжение анода ниже, чем экранирующей сетки, то в промежутке экранирующая сетка — анод образуется потенциальный барьер для вторичных электронов. На рис. 19.10 показано распределение электронов в электронном пучке и потенциала в промежутке анод — экранирующая сетка при uа < иg2. Кривая 1 соответствует обычному тетроду или лучевому тетроду, если ...

13. Выбор величины сопротивления резистора в цепи сетки

Во-первых, всегда бывает небольшое технологическое загрязнение сетки оксидным покрытием, используемым для формирования эмиссионной поверхности катода, что вызывает незначительную эмиссию электронов с поверхности сетки. Второй, более существенной причиной, является наличие так называемого тока ионного разряда. Рассмотрим подробнее это явление. Ток ионного разряда всегда имеет место, потому что в электронной лампе всегда имеется остаточный газ (идеальный вакуум обеспечить невозможно). Молекулы остаточного газа находятся в постоянном хаотическом движении, называемом броуновским движением, кото...

14. Газоразрядные и индикаторные приборы - Дисплеи

В качестве электрохромного вещества чаще всего применяют триоксид вольфрама WO3. Его пленка под напряжением приобретает синий цвет. Для этого требуется напряжение всего лишь 0,5 — 1,5 В. При перемене полярности напряжения пленка приобретает исходный цвет. Эти дисплеи потребляют небольшую мощность и обладаю...

15. Типы конденсаторов. Алюминиевые электролитические конденсаторы

Например, если к конденсатору все время приложено постоянное напряжение, то через него будет постоянно протекать ток минимального значения, необходимый для постоянного самозалечивания оксидного слоя. Если оборудование отключается на какое-то время, то при его обратном включении сначала будет протекать ток утечки, превышающий обычное значение, до тех пор, пока не завершится процесс повторной формовки оксидного слоя. Чем длительнее нерабочий период, когда на конденсаторе отсутствует напряжение, тем длительнее и тем выше в начальный момент будет значение тока утечки; поэтому существует реальная угроза, что этот ток может вызвать сильный разогрев электролита в конденсаторе. При нагр...

16. Принцип устройства и работы электро-вакуумных приборов - Электронная эмиссия

Помимо уменьшения работы выхода, свойственного оксидному слою, здесь играет роль проникновение внешнего поля в полупроводниковый оксидный слой и шероховатость поверхности оксида. Вторичная электронная эмиссия обусловлена ударами электронов о поверхность тела. При этом ударяющие электроны называются первичными. Они проникают в поверхностный слой и отдают свою энергию электронам данного вещества. Некоторые из последних, получив значительную энергию, могут выйти из тела. Такие электроны называются вторичными. Вторичная эмиссия обычно возникает при энергии первичных электронов 10—15 эВ и выше. Если энергия первичного электрона достаточно велика, то он может выбить неск...

17. Постоянная токовая нагрузка первого дифференциального каскада. Температурная стабилизация

При этом основным допущением является, что температура диода точно соответствует температуре перехода полупроводникового прибора, который вносит ошибку, поэтому компенсирующий прибор должен быть закреплен на основном приборе, например, с помощью эпоксидного клея, а сам он изолирован от конвекционных потоков экраном из пенополистирола. Действительно, в паспортных данных приводится схема компенсации температурного дрейфа, в которой просто требуется, чтобы сопротивление дополнительного резистора...

18. Принцип устройства и работы электро-вакуумных приборов - Термоэлектронные катоды

Зависимость эмиссии оксидного катода от длительности импульса анодного тока В импульсном режиме эмиссия оксидного катода может быть во много раз сильнее, нежели в режиме непрерывной работы. Она происходит под действием сильного внешнего электрического поля, т. е. представляет собой сочетание электростатической эмиссии с термоэлектронной. Однако с течением времени такая эмиссия быстро ослабевает (рис. 15.6). Говорят, не совсем удачно, что сверхвысокая эмиссия «отравляет» оксидный катод. «Отравление» прекращается, если катод «отдохнет». Тогда он восстанавливает свою эмиссионную способность и может снова дать на короткое время бол...

     >>>>>     0
!...................
20
!...................
40
!...................
60
!...................
80
!...................
100
!...................
120
!...................
 

 

 

Информация

 

Информация

Рис. 8.2 Изменение схемы стандартного входного каскада при переключении пентода на триодную схему работы Более старые модели источников сигнала (особенно это касается тюнеров) были рассчитаны на величину выходного сигнала 250 мВ. Таким образом, если
чувствительност-
ь на входе линейного каскада составляет ≈ 250 мВ, а выходной сигнал должен составлять 2 В, то это означает, что необходимо обеспечить коэффициент усиления лампового каскада Av = 8. К тому же неплохой идеей может оказаться решение иметь дополнительный запас усиления в ЗдБ к уже имеющимся 6дБ, чтобы использовать записи с пониженным уровнем сигнала. В итоге, значение усиления Av = 12 оказывается вполне достаточным для практики. Линейному каскаду должен предшествовать узел регулировки громкости, более подробно особенности которого будут рассматриваться далее, однако, для дальнейшего изложения можно пока принять, что это будет переменный потенциометр 100 кОм с логарифмическим законом изменения сопротивления, максимальное значение выходного сопротивления которого будет равно 25 кОм. Максимальное значение выходного сопротивления такого простейшего регулятора громкости проверяется очень легко. Для этого движок его потенциометра устанавливается в среднее, по величине его сопротивления, положение на токоведущей дорожке. Иными словами, сопротивление относительно крайних выводов должно составлять ровно половину общего сопротивления. Далее, следует принять, что сопротивление источника питания имеет нулевое значение, а каждый крайний вывод потенциометра будет заземленным по переменной составляющей. То есть в потенциометре две половины его токоведущей дорожки окажутся включенными параллельно, и поэтому выходное сопротивление будет равно полному сопротивлению потенциометра, поделенному на 4. Если движок потенциометра окажется в крайнем положении токоведущей дорожки, выходное сопротивление окажется равным нулю, потому что выход оказывается подключенным либо непосредственно на землю, либо через сопротивление источника питания (имеющее нулевое сопротивление). Таким образом, максимальное выходное сопротивление потенциометра будет в том случае, когда его движок будет максимально удален от каждого из концевых выводов, а это будет соответствовать центральному положению движка. Вопрос выходного сопротивления потенциометра регулятора громкости является чрезвычайно важным, так как он образует фильтр нижних частот совместно с входной емкостью линейного каскада. Если использовать ранее приведенную аргументацию о требуемом уровне высокочастотных потерь в 0,1 дБ на частоте 20 кГц, то при величине максимального значения выходного сопротивления узла регулировки громкости 25 кОм, наибольшее допускаемое значе

 
 
Сайт создан в системе uCoz