Содержание

 

 
 

Сопротивление в эквивалентной схеме замещения Тевенина

1. Классическая схема последовательного стабилизатора

Следовательно, всегда необходимо помнить, что реальный стабилизатор может только имитировать характеристики идеального источника Тевенина в ограниченном рабочем диапазоне, поэтому всегда необходимо быть уверенным, что работа стабилизатора не выходит за эти пределы границ этого диапазона. Принцип работы всех стабилизаторов напряжения базируется на свойствах схемы делителя напряжения. Если какое-нибудь из плеч делителя, неважно, будет ли это верхнее, либо нижнее плечо, сделано регулируемым тем или иным образом, то выходное напряжение может изменяться путем воздей...

2. Особенности источников смещения подогревателей ламп, находящихся под повышенным потенциалом относительно корпуса

Входное сопротивление со стороны базовой цепи транзистора примерно равняется выходному сопротивлению эквивалентной схемы Тевенина для резисторной цепи, поэтому частота среза фильтра составит 1,5 Гц. Для нижнего эмитерного повторителя два фильтра с частотами среза 1,5 Гц оказываются включенными каскадно, что приводит к еще большему ослаблению уровня шума. Величина емкости конденсатора совершенно не является критичной. Если в этом есть необходимость, можно не ограничиваться двумя рассмотрен...

3. Составление предварительной схемы блока питания

Сопротивление в эквивалентной схеме замещения Тевенина, состоящей из резисторов с сопротивлениями 150 и 600 Ом, будет составлять 120 Ом. Теоретически можно было бы использовать конденсатор с емкостью 13 мкФ для шунтирования вывода Настройка (AGJ) на землю, однако конденсаторы со стандартными значениями емкости 10 или 15 мкФ подойдут одинаково хорошо. В рекомендациях по применению производителя рекомендуется, чтобы выход интегрального стабилизатора 317 серии шунтировался на землю танталовым конденсатором с емкостью 1 мкФ через резистор с соп...

4. Высоковольтный выпрямитель и стабилизатор

Эквивалентное сопротивление Тевенина относительно вывода Настройка стабилизатора составляет примерно 950 Ом, что требует использования шунтирующего на землю конденсатора с емкостью 1,5 мкФ. Такой конденсатор очень дорог и занимает большой объем (рабочее напряжение 400 В), поэтому величина емкости обычно уменьшается до 470 пФ и используется соответствующий по типу стандартный конденсатор. ...

5. Расчет значений элементов цепи, определяющей постоянную времени 75 мкс

Однако было бы неплохо учесть, какие, и весьма значительные, усилия были затрачены при расчетах на подгонку величин номиналов, чтобы достигнуть этот действительно изящный результат! В самом начале при анализе не было учтено влияние разделительного конденсатора связи С1, хотя он должен оказывать некоторое влияние на эквивалентное сопротивление схемы Тевенина, с которой он связан электрически. Можно было бы использовать в качестве С1 конденсатор очень большой емкости, чтобы сделать его реактивное сопротивление очень мале...

6. Способы увеличения выходного тока стабилизатора

Можно было бы просто подключить катодный резистор на землю, однако, делитель напряжения, включенный параллельно стабилизированному выходу, может устанавливать необходимое значение напряжения и обеспечивать значительно меньшее значение выходного сопротивления эквивалентной схемы замещения Тевенина (15 кОм по сравнению с сопротивлением 800 кОм). Принципиальная роль данного резистора заключается в том, что он снижает общее усиление каскада, поэтому необходимо как можно меньшее значение сопротивления для того, чтобы обеспечить максимальное значение усиления с разомкнутой петлей обратной связи...

7. Стабилизатор цепи сеточного смещения с регулируемым выходным напряжением

33. Эквивалентная схема Тевенина по переменной составляющей для стабилизатора серии 317 с шунтирующим конденсатором емкостью 1 мкФ Если принять, что танталовый дисковый конденсатор имеет идеальные характеристики (!), то можно считать, что в наличии имеется колебательный контур с докритическим затуханием, для которого добротность Q определяется следующим образом: Паразитное сопротивление будет значительно снижать добротность Q, но не сможет уменьшить ее до значения Q = 05, которое могло бы быть критическим для затухания. Это не будет иметь большого значения, ...

8. Метод частотной коррекции стандарта RIAA

Следовательно, значения элементов пассивной схемы должны рассчитываться с использованием эквивалентной схемы замещения Тевенина. Аналогичным образом значения всех паразитных емкостей, либо емкости Миллера, должны вычитаться из рассчитанного значения емкости С2. Для любой другой схемы, использующей топологию «все сразу и все вместе», но отличающейся от рассмотренного топологического варианта схемы, необходимо будет обратиться к материалам, приводимым Лифшицем, и внимательно с ними ознакомиться перед тем, как приступить к расчетам. ...

9. Шумы и влияние входной емкости входного каскада

Звукосниматель (cartridge) с подвижной магнитной системой может быть представлен на эквивалентной схеме в виде резистора с последовательно включенной индуктивностью, а так как источник Тевенина имеет равное нулю внутреннее сопротивление, его можно представить в виде короткозамкнутой цепи. После таких преобразований схема примет следующий вид ( рис. 8.19в). Для завершения составления эквивалентной схемы-модели в эту схему необходимо добавить несколько источников шума (рис. 8.19г). Рис. 8.19 Шумы во входном каска...

10. Расчет сопротивлений резистора катодного смещения входной лампы и резистора обратной связи

Далее (для упрощения расчетов) следует принять, что выход усилителя представляет собой идеальный источник напряжения (источника Тевенина), к которому подключено сопротивление обратной связи «rу». Следует также принять собственный ток обратной связи лампы в качестве идеального источника тока (источника Нортона), а катодный резистор «rх» шунтировать сопротивлением rk. Эти приближения довольно близки к жизни и не внесут значительной погрешности в расчет. Таким образом, можно вычертить схему замещения рассматриваемой цепи (рис. 7.34). Необходимо на схеме замещения пометить вели...

11. Критерии выбора силового трансформатора и накопительного (сглаживающего) конденсатора

Поэтому их поведение становится гораздо сложнее, чем предсказывает схема идеального источника напряжения Тевенина, в силу чего анализ необходимо проводить с учетом поведения реальной схемы в различные моменты времени. На протяжении очень короткого начального периода времени (менее времени заряда конденсатора) вых...

12. Параметры цепей, определяющих постоянные времени 3180 мкс, 318 мкс, и проблемы взаимовлияния элементов цепей

Если это так, то его можно на эквивалентной схеме заменить короткозамкнутой перемычкой, и рассчитать новое значение выходного эквивалентного сопротивления данной эквивалентной схемы замещения Тевенина. Так как величины сопротивлений резисторов относятся как 9:1, то делитель напряжения обеспечивает ослабление в отношении 10:1, и выходное сопротивление будет, следовательно, составлять одну десятую сопротивления от значения верхнего (по схеме) резистора. Если принять, что значение сопротивления верхнего резистора по-прежнему составляет 200 кОм (при этом для простоты пренебрегается эквивал...

13. Двухтранзисторная схема последовательного стабилизатора

Если величина (1 + βA0) снизилась, то выходное комплексное сопротивление должно возрасти и эффект проявится в том, что выходной импеданс возрастет с частотой. Идеальный источник Тевенина с последовательно включенной индуктивностью выглядел бы совершенно аналогично, и только по этой причине выход стабилизаторов часто считается на высоких частотах, как индуктивный. Шунтирующий же конденсатор обеспечивает низкое выходное комплексное сопротивление в области высоких частот. ...

     >>>>>     0
!...................
20
!...................
40
!...................
60
!...................
80
!...................
100
!...................
120
!...................
 

 

 

Информация

 

Информация

Неприменимость законов статического режима к динамическому объясняется инерцией электронов. Рис. 24.2. Сравнение времени пролета электронов с периодом колебаний Вместо времени пролета часто пользуются углом пролета αпр, который связан с временем tпр соотношением αпр = ω tпр, (24.3) где ω — угловая частота переменного напряжения электродов лампы. Очевидно, что αпр есть изменение фазового угла переменного напряжения за время tпр. Если, например, tпр = Т/4, то αпр = 90°. При углах пролета меньше 20° инерцию электронов обычно не учитывают, т. е. режим считают
квазистатически-
м. Рассмотрим особенности электронных процессов в триоде на СВЧ, имея в виду, что электрон большую часть времени пролета тратит на промежуток катод — сетка, так как здесь ускоряющая разность потенциалов невелика. Пусть, для примера, время пролета на этом участке равно половине периода, а рабочая точка установлена в самом начале анодно-сеточной характеристики лампы. На более низких частотах при этом был бы режим отсечки анодного тока, т. е. импульсы анодного тока проходили бы в течение положительных полупериодов переменного сеточного напряжения, а во время отрицательных полупериодов лампа была бы заперта. Но если tпр = Т/2, то работа лампы существенно изменится. Электроны, начавшие свое движение от катода в начале положительного полупериода сеточного напряжения, пролетят сквозь сетку в конце этого полупериода. Последующие электроны, начавшие движение позже, не успеют долететь до сетки во время положительного полупериода. Они еще будут в пути, когда на сетке переменное напряжение уже изменит свой знак и поле между сеткой и катодом станет тормозящим. Многие электроны будут заторможены, остановятся, не долетев до сетки, и вернутся на катод. Это особенно относится к электронам, начавшим движение от катода в конце положительного полупериода, так как они почти сразу попадают в тормозящее поле. Возвращение части электр

 
 
Сайт создан в системе uCoz