Содержание

 

 
 

Присутствующие в схеме стабилитроны обычно шунтируют, чтобы уменьшить шум

1. Использование транзисторов в качестве активной нагрузки для электронных ламп

Таким образом, рабочую точку нужно установить посередине между минимальным и максимальным анодными напряжениями, за пределами которых будут появляться значительные искажения: Зная величину анодного напряжения в точке покоя, по статическим характеристикам легко определить требуемое напряжения смещения Vck = 8 В, которое легко может быть обеспечено, например установкой в катодную цепь стабилитрона на 8,2 В (рис. 3.46). Поскольку каскад, рассматриваемый в данном примере, предназначен для работы с большим размахом выходного напряжения, шумы стабилитрона не является значительной проблемой, поэтому в этой схеме не обязательно шунтировать стабилитрон конденсатором. Если на электронной лампе падает 242,5 В, то на нижнем транзисторе упадет 147,5 В, таким образом он должен рассеивать 1,18 Вт в режиме покоя при заданном токе. К...

2. Варианты применения стабилизатора высоковольтного напряжения

Для дальнейшего снижения уровня шумов стабилитроны шунтируются конденсаторами с емкостью 22 мкФ и рабочими напряжениями 350 В. Напряжение на затворе МОП полевого транзистора составит Vout + Vgs = 300 + 4 = 304 В (несмотря на большой разброс параметров приборов, величина 4 В представляет все-таки достаточно грубое приближение для значения управляющего напряжения затвора Vgs мощного МОП полевого транзистора). Так как коллектор рассогласующего транзистора подключен к затвору МОП полевого транзистора, а на эмиттер подается опор...

3. Газоразрядные и индикаторные приборы - Тлеющий разряд

Вольт-амперная характеристика стабилитрона Падение напряжения на приборе Ua = iaR0. Здесь R0 — сопротивление ионизированного газа между анодом и рабочей частью поверхности катода. В данном случае этот своеобразный «проводник» имеет форму конуса. Если увеличить подводимое напряжение, ток возрастет и пропорционально увеличится рабочая площадь катода. Площадь поперечного...

4. Высоковольтный выпрямитель и стабилизатор

Резистор с сопротивлением 31 кОм, включенный последовательно со стабилитроном с рабочим напряжением 15 В, задает ток стабилитрона. Для снижения шумов и максимальной устойчивости ток стабилитрона должен превышать значение 5 мА. Известно, что на выходе стабилизатора напр...

5. Проблемы смещения по постоянному току

18 Катодное смещение с диодом В стабилитронах низкого напряжения используется истинный эффект Зенера, но диоды высокого напряжения в действительности используют лавинный эффект. При напряжении порядка 6,2 В, присутствуют оба эффекта, их противоположный температурный коэффициент подавляется, внутреннее сопротивление rдиода при этом минимальное, шум тоже минимальный, поэтому удобнее всего стабилитроны на напряжение 6,2 В. Если требуется идеальный источник высокого опорного напряжения, то лучше включить пос...

6. Стабилизатор цепи сеточного смещения с регулируемым выходным напряжением

На практике, выбор стабилитрона, рассчитанного на напряжение, равное примерно половине максимального значения выходного напряжения, считается вполне разумным, к тому же, стабилитроны на рабочее напряжение 75 В имеют достаточное широкое распространение. Стабилитрон поддерживает напряжение —75 В на эмиттере транзистора, отпирающее напряжение база-эмиттер равно 0,7 В, следовательно, на базе транзистора будет фиксированное значение напряжения —75,7 В. Так как база транзистора подключена к движку резистора делителя напряжения, то напряжение на движке потенциометра также будет равно —75,5 В. При этом, вне зависимости от того, какое значение выходного напряжения установлено. Можно теперь рассчитать значения необходимого осл...

7. Электронная лампа, радиолампа. Физика и схемотехника

Применение диода для выпрямления переменного тока Основные типы Трехэлектродные лампы Физические процессы Токораспределение Действующее напряжение и закон степени трех вторых Характеристики Параметры Рабочий режим триода Особенности Усилительный каскад с триодом Параметры усилительного каскада Аналитический расчет и эквивалентные схемы усилительного каскада Графоаналитический расчет режима усиления Генератор с триодом Межэлектродные емкости Каскады с общей сеткой и общим анодом Недостатки триодов Основные типы приемно-усилительных триодов Многоэлектродные и специальные лампы Устройство и работа тетрода Устройство и работа пентода Схемы включения тетродов и пентодов Характеристики тетродов и пентодов Параметры тетродов и пентодов Межэлектродные емкости тетродов и пентодов Устройство и работа лучевого тетрода Характеристики и параметры лучевого тетрода Рабочий режим тетродов и пентодов Пентоды переменной крутизны Краткие сведения о различных типах тетродов и пентодов Специальные лампы Электронно-лучевые трубки Общие сведения Электростатические электронно-лучевые трубки Магнитные электронно-лучевые трубки Люминесцентный экран Краткие сведения о различных электронно-лучевых трубках Газоразрядные и индикаторные приборы Электрический разряд в газах Тлеющий разряд Стабилитроны Тиратроны тлеющего разряда Индикаторные приборы Дисплеи Краткие сведения о различных газоразрядных приборах Фотоэлектронные приборы Фотоэлектронная эмиссия Электровакуумные фотоэлементы Фотоэлектронные умножители Собственные шумы электронных ламп Причины собственных шумов Шумовые параметры Особенности работы электронных ламп на СВЧ Межэлектродные емкости и индуктивности выводов Инерция электронов Наведенные токи в цепях электродов ...

8. Газоразрядные и индикаторные приборы - Индикаторные приборы

Разница между напряжениями UП и UВ характерна для всех газоразрядных приборов, в частности для стабилитронов. У неоновых ламп напряжение UП на несколько единиц или десятков вольт ниже, чем напряжение UB. Это объясняется тем, что перед возникновением разряда газ неионизирован. А перед прекращением разряда газ ионизирован, и разряд существует при более низком напряжении. Неоновая лампа применяется в качестве индикатора постоянного и переменного напряжения. При переменном напряжении разряд возникает в момент, когда мгновенное значение напряжения становится равным напряжению UB. Промышленность выпускает много различных неонов...

9. Ламповый стабилизатор напряжения

Лампа EF86 является достаточно малошумящей (напряжение шума порядка 2 мкВ), однако, это значение перекрывается шумом лампы-стабилитрона 85А2, которое составляет 60 мкВ. Газоразрядные лампы-стабилитроны, такие, например, как 85А2, пользуются дурной славой за присущие им скачки напряжения, эффекта, когда эталонное постоян...

10. Проблема сопряжения одного каскада со следующим

Так как аккумуляторы на 110 В неудобно большие, заменим аккумулятор стабилитроном или неоновой лампой — источником опорного сигнала. К сожалению оба устройства должны пропускать значительный ток покоя (обычно порядка 5 мА), что затрудняет их использование. Хуже всего — они оба шумят. Существует и еще одна возможность исправить положение — заменить нижний р...

11. Увеличение максимально допустимого обратного напряжения VRRM при последовательном включении выпрямительных диодов

Импульсное напряжение, имеющее частоту 50 Гц, ограничивается по амплитуде до значения примерно 5 В с использованием стабилитрона, имеющего рабочее напряжение 4,7 В. Конденсатор, имеющий емкость 10 нФ, фильтрует высокочастотные шумы, которые в противном случае заставляли бы ложно запускаться счетчик импульсов, выполненный на логической интегральной микросхеме серии 4040. Состояние выхода QL счетчика 4040 изменяется от уровня логического нуля (низкий уровень 0 В) до уровня логической единицы (высокий уровень 5 В) после каждых 2048 импульсов (период колебаний импульсного сигнала равен периоду колебаний синусоидального напря...

12. Газоразрядные и индикаторные приборы - Стабилитроны

Рис. 21.8. Схема включения стабилитрона Для стабилитронов коронного разряда характерны высокие напряжения и малые токи. У таких стабилитронов (рис. 21.7,6) электроды цилиндрической формы из никеля. Баллон наполнен водородом, причем напряжение стабилизации зависит от давления газа, которое обычно составляет тысячи паскалей (десятки миллиметров ртутного столба). Напряжение Uст при этом несколько сотен вольт. Рабочие токи в пределах 3 — 100 мкА. Внутреннее сопротивление переменному току сотни килоом. Процесс возникновения разряда ...

13. Газоразрядные и индикаторные приборы - Электрический разряд в газах

Основные приборы тлеющего разряда — стабилитроны (газоразрядные стабилизаторы напряжения), газосветные лампы, тиратроны тлеющего разряда, знаковые индикаторные ла...

14. Усилитель класса А для электромагнитных головных телефонов с непосредственной междукаскадной связью

Если должен использоваться стабилитрон, то шум должен фильтроваться; • шум не является проблемой сам по себе, он становится проблемой, когда напряжение сигнала достаточно низкое, и отношение сигнал / шум становится критическим. Решение: не использовать схемы сдвига уровня с источником тока в предусилителях; • если шум может быть введен в схему таким образом, чтобы стать синфазным, то он может быть компенсирован дифференциальной парой. Это наиболее действенная методика. Несколько лет назад, автор приобрел в магазине подержанных вещей 40 полевых МОП-...

15. Постоянная токовая нагрузка первого дифференциального каскада. Температурная стабилизация

Традиционным методом температурной компенсации каскада является последовательное включение кремниевого диода со стабилитроном, чтобы компенсировать изменения напряжения база-эмитер Vbe нижнего транзистор...

16. Классическая схема последовательного стабилизатора

Так как совершенно аналогичные аргументы могут быть использованы для описания работы схемы при увеличении выходного напряжения, то можно заключить, что работы схемы будет устойчивой, а величина выходного напряжения определяется параметрами схемы делителя напряжения и источника опорного напряжения (стабилитрона). Если перерисовать схему стабилизатора в несколько ином виде, то легко можно видеть, что она представляет собой обычный усилитель, коэффициент усиления которого задается делителем напряжения, и что данный усилитель усиливает опорное напряжение (рис. 6.28). Рис. 6.28 Видоизмененная схема последовательного стабилизатора, призванная продемонстрировать его сходство с неинвертирующим усилителем После рассмотрения преобразованной ...

17. Принцип устройства и работы электро-вакуумных приборов - Общие сведения, классификация

Основные ионные приборы — это тиратроны, стабилитроны, лампы со знаковой индикацией, ионные разрядники и др. Большую группу составляют электронно-лучевые приборы, к которым относятся кинескопы (приемные телевизионные трубки), передающие телевизионные трубки, осциллографические и запоминающие трубки, электронно-оптические преобразователи изображений, электронно-лучевые переключатели, индикаторные трубки радиолокационных...

18. Способы увеличения выходного тока стабилизатора

Более того, ток, протекающий по неоновой лампе-стабилитрону, служащей источником опорного напряжения, был уже стабилизирован до предпочтительного значения рабочего тока, в силу чего скачки окажутся мин...

     >>>>>     0
!...................
20
!...................
40
!...................
60
!...................
80
!...................
100
!...................
120
!...................
 

 

 

Информация

 

Информация

Пентоды переменной крутизны Большое усиление в усилительных каскадах радиочастоты приемников полезно при слабых сигналах, а при сильных сигналах создаются значительные искажения. Для удобства регулировки усиления в зависимости от силы сигналов некоторые пентоды делают с
характеристикой-
, нижняя часть которой сильно удлинена (рис. 19.13). Эти лампы называют лампами переменной крутизны. Подобная характеристика достигается тем, что управляющую сетку делают с переменной густотой: небольшой участок посредине сетки редкий, остальная часть — густая. Тогда при большом отрицательном смещении сетки лампа на участках густой сетки запирается и работает только на участке редкой сетки, что соответствует малой крутизне, но большому напряжению запирания. Коэффициент усиления каскада K ≈SRH получается малым. При небольшом отрицательном смещении действуют все участки сетки, но главное влияние на анодный ток оказывают участки густой сетки. Им соответствует значительная крутизна, но небольшое напряжение запирания. Большая крутизна обеспечивает высокий коэффициент усиления каскада. Для слабых сигналов рабочая точка устанавливается на крутом участке характеристики (точка Т2), а для сильных сигналов отрицательное сеточное смещение увеличивается и рабочая точка располагается на участке с малой крутизной (точка Т2). Колебания анодного тока в обоих случаях примерно одинаковы. Установка нужной рабочей точки производится автоматически. Более сильные сигналы создают постоянное напряжение, которое подается в качестве дополнительного сеточного смещения на лампу переменной крутизны и сдвигает рабочую точку на участок характеристики с малой крутизной. Подобная система называется автоматической регулировкой усиления (АРУ). Пентоды переменной крутизны Большое усиление в усилительных каскадах радиочастоты приемников полезно при слабых сигналах, а при сильных сигналах создаются значительные искажения. Для удобства регулировки усиления в зависимости от силы сигналов некоторые пентоды делают с
характеристикой-
, нижняя часть которой сильно удлинена (рис. 19.13). Эти лампы называют лампами переменной крутизны. Подобная характеристика достигается тем, что управляющую сетку делают с переменной густотой: небольшой участок посредине сетки редкий, остальная часть — густая. Тогда при большом отрицательном смещении сетки лампа на участках густой сетки запирается и работает только на участке редкой сетки, что соответствует малой крутизне, но большому напряжению запирания. Коэффициент усиления каскада K ≈SRH получается малым. При небольшом отрицательном смещении действуют все участки сетки, но главное влияние на анодный ток оказывают участки густой сетки. Им соответс

 
 
Сайт создан в системе uCoz