Содержание

 

 
 

Радиатор обдувается воздухом от вентилятора

1. Основные вопросы, возникающие при выборе конденсатора

9 Подключение шунтирующих конденсаторов Весьма полезным приближением при рассмотрении схемы любой цепи является прием, когда каждый провод рассматривается как бы проходящим по воздуху и имеющим собственную индуктивность. Далее следует предположить, что на цепь воздействует сильное электромагнитное поле высокой частоты, которое наводит сильные токи в каждом проводнике. Следует заметить, что данное приближение не очень-то сильно отличается от реального положения дел, поскольку в жизни имеется большое количество различных ради...

2. Особенности цифрового сигнала от компакт-диска

Резистор анодной нагрузки марки WH50 с сопротивлением 47 кОм и низковольтный диод Шоттки закреплены на шасси для снижения их рабочих температур, поэтому температура воздуха внутри корпуса усилителя должна быть минимальной. Лампы монтируются на перфорированном алюминиевом листе, нижнее основание корпуса усилителя также полностью перфорировано отверстиями. Усилитель устанавливается на шпильках, предназначенных для крепления демпфирующего покрытия корпусов громкоговорителей, что позволяет охлаждающему воздуху свободно циркулировать между лампами и компонентами схемы. Внешний вид конструкции прив...

3. Выпрямление переменного тока

Поэтому для таких выпрямителей может оказаться необходимым использовать электрический вентилятор, обеспечивающий дополнительный отвод горячего воздуха от близкорасположенных нагретых элементов схемы. В дополнение ко всему, выпрямитель типа 866 требует применения совместно с ним стабилизирующего нагрузочного резистора, подключенного параллельно выходным клеммам выпрямителя и отводящего примерно 10% от общего тока нагрузки. Рту...

4. Ряды стандартизованных значений сопротивлений

В технических паспортах резисторов приводится значение теплового сопротивления R0, однако, следует учитывать, что значения приведены для случая, когда поток воздуха, охлаждающий резистор за счет конвекционных потоков, не имеет никаких препятствий на своем пути перемещения. На практике же резистор практически всегда монтируется на печатной плате, которая в значительной мере препятствует конв...

5. Специальные электронные приборы для СВЧ - Магнетрон

Наружная часть анода обычно делается в виде ребристого радиатора для лучшего охлаждения. Иногда его обдувают воздухом. С боковых сторон к аноду припаяны медные диски, образующие вместе с анодом баллон, необходимый для сохранения вакуума. Выводы от подогревателя проходят в стеклянных трубках, спаянных с анодом. Катод обычно п...

6. Специальные электронные приборы для СВЧ - Пролетный клистрон

Охлаждение мощных пролетных клистронов бывает естественным или принудительным (воздухом или водой). Коэффициент полезного действия многорезонаторных пролетных клистронов достигает 50%, но у многих типов он заметно меньше. А коэффициент усиления мощности у таких клистронов составляет иногда несколько десятков тысяч. Практически трудно получить усиление более чем в 106 раз. Для мощных клистронов, особенно импульсных, требуется напряжение питания в десятки и даже сотни киловольт. Пролетные клистроны имеют очень узкую полосу частот пропускаемых колебаний, что объясняется наличием нескольки...

7. Общие сведения о катушках индуктивности

Относительная магнитная проницаемость имеет различные значения и может меняться от 1 для воздуха до примерно 5500 для железа. Длина магнитопровода отсчитывается по замкнутому контура от какой-то начальной точки, а площадь поперечного сечения магнитопровода просто принимается равной площади сечения магнитного сердечника. Поэтому, может показаться, что вышеприведенное уравнение без особых трудностей может быть использовано для расчета индуктивности. К сожалению, параметр μr сильно зависит от плотн...

8. Принцип устройства и работы электро-вакуумных приборов - Общие сведения, классификация

Под вакуумом следует понимать состояние газа, в частности воздуха, при давлении ниже атмосферного. Если электроны движутся в пространстве свободно, не сталкиваясь с оставшимися после откачки газа молекулами, то говорят о высоком вакууме. Электровакуумные приборы делятся на электронные, в которых течет чисто электронный ток в вакууме, и ионные (газоразрядные), для которых характерен электрический разряд в газе (или парах). В электронных приборах ионизация практически отсутствует, а давление газа менее 100 мкПа (высокий ...

9. Активные кроссоверы и схема Зобеля

Однако, для мембран НЧ громкоговорителей часто не удается использовать этот прием из-за того, что больший ход диффузора и пылезащитного колпачка энергично сжимает воздух внутри магнитной системы и выталкивает ферромагнитную жидкость из зазора. Низкочастотные громкоговорители имеют звуковые катушки, обладающие значительной индуктивностью, следовательно, для своего выделенного усилителя они представляют увеличенное индуктивное сопротивление, к...

10. Особенности работы электронных ламп на СВЧ - Основные типы электронных ламп для СВЧ

Для охлаждения анода используется ребристый радиатор, который навинчивается на штифт анода. Радиатор обдувается воздухом от вентилятора. Лампы этого типа могут работать и без радиатора, но тогда допустимая мощность рассеяния на аноде и наибольшая полезная мощность значительно снижаются. В металлокерамической серии лампы типа ГС предназначены для непрерывного режима работы, лампы типа ГИ — для импульсного. Лампы более сложные, чем триоды, для дециметрового диапазона применяют редко, так как при большем числе сеток приходится увеличивать расстояние между анодом и катодом, но тогда возрастает время пролета электронов. В приемных лампах увеличение числа электродов приво...

11. Особенности акустических систем

Низкочастотные акустические колебания производятся движением больших масс воздуха, для чего необходим большой, грубый и сравнительно тяжелый диффузор. Высокочастотные акустические колебания производятся ускорением и замедлением движения диффузора или обтекателя с частотой до 10—15 ...

12. Принцип устройства и работы электро-вакуумных приборов - Особенности устройства электронных ламп

Вакуум в лампах необходим прежде всего потому, что накаленный катод при наличии воздуха сгорит. Кроме того, молекулы газов не должны мешать свободному полету электронов. Высокий вакуум в лампах характеризуется давлением менее 100 мкПа. Если вакуум недостаточный, то летящие электроны ударяют в молекулы газов и превращают их в положительные ионы, которые бомбардируют и разрушают катод. Ионизация газов увеличивает также инерционность и нестабильность работы лампы и создает дополнительные шумы. Рис. 15.9. Конструк...

     >>>>>     0
!...................
20
!...................
40
!...................
60
!...................
80
!...................
100
!...................
120
!...................
 

 

 

Информация

 

Информация

Пусть, например, RИK = 100 кОм и Сg-к = 10 пФ. Тогда на частоте 500 Гц сопротивление 1/(ωСg-к) = 32 МОм, что равносильно разрыву цепи. Но если повысить частоту до 5 МГц, т. е. в 104 раз, то сопротивление входной емкости станет равным 3,2 кОм. Оно будет сильно нагружать источник колебаний, и его напряжение резко понизится. Действие выходной емкости состоит в том, что она шунтирует нагрузку каскада. Полное сопротивление нагрузки ZH станет меньше RH, и это приведет к понижению коэффициента усиления каскада. На высоких частотах емкость Са-к вызывает также фазовый сдвиг выходного напряжения. При усилении звуковых колебаний это не имеет значения, но для телевизионных сигналов и в ряде других случаев фазовый сдвиг недопустим. В каскадах, имеющих в качестве нагрузки колебательный контур (в усилителях радиочастоты и генераторах), емкость Са-к входит в состав контура и добавляется к его емкости. При расчете контура емкость Са-к учитывается. На весьма высоких частотах она может оказаться больше емкости контура. Построить такой контур невозможно. Если имеется резонансный контур в цепи сетки, то входная емкость добавляется к емкости этого контура. При смене ламп из-за разброса их межэлектродных емкостей нарушается настройка контуров. Наиболее вредное влияние оказывает проходная емкость Са-g. Прежде всего, она нагружает источник колебаний. Емкостный ток Im равен сумме емкостных токов Img-к и Ima-g, протекающих через емкости Сg-к и Са-g : Im ≈ Img-к + Ima-g (18.54) Знак приближенного равенства стоит потому, что токи правильнее складывать геометрически, а не арифметически. Выразим каждый ток по закону Ома: Img-к = UmgωСg-к и Ima-g =
Uma-gωСа-g-
, (18.55) где Uma-g — амплитуда напряжения между анодом и сеткой. Так как переменные напряжения сетки и анода Umg

 
 
Сайт создан в системе uCoz