Содержание

 

 
 

Физические процессы Катод и анод работают в триоде так же, как в диоде

1. Увеличение максимально допустимого обратного напряжения VRRM при последовательном включении выпрямительных диодов

Обратное напряжение, которое будет приложенное к каждому из диодов, во многом определяется величиной барьерной емкости его перехода в момент выключения (Q = CV), а также удельным сопротивлением самого перехода (влияющим на рассасывание...

2. Принцип устройства и работы электро-вакуумных приборов - Устройство и работа триода

Часть триода, состоящая из катода, сетки и пространства между ними, подобна диоду. Рис. 15.4. Токи в цепях триода Основной и полезный ток в триоде — анодный. Он аналогичен коллекторному току биполярного транзистора или току стока полевого транзистора. Сеточный ток, аналогичный току базы транзистора, бесполезен и даже вреден. Во многих случаях сеточный ток уничтожают. Для этого напряжение сетки должно быть отрицательным. Тогда сетка отталкивает электроны. Возможность уничтожения вредного сеточного тока существенно отличает триод от биполярного транзистора, который всегда работает с током базы. В проводе катода про...

3. Выпрямление переменного тока

К счастью, указанная проблема решается достаточно простым шунтированием каждого отдельного диода пленочным конденсатором с емкостью 10 нФ, рабочее напряжение которого равняется рабочему напряжению VRRM диода. ...

4. Газоразрядные и индикаторные приборы - Краткие сведения о различных газоразрядных приборах

Среди приборов дугового разряда следует отметить газотроны, представляющие собой мощные диоды с термоэлектронным катодом, наполненные инертным газом или парами ртути. Они предназначены для выпрямления высоких напряжений и больших токов, причем падение напряжения на самих газотронах всего лишь 10—30 В. В качестве мощных выпрямителей служат также ртутные вентили и экситроны с одним или несколькими анодами, имеющие жидкий ртутный катод с электростатической эмиссией. Более совершенные ртутные вентили — игнитроны имеют также ртутный катод и дополнительный пусковой ...

5. Выбор электронной лампы по критерию низких искажений

Решение, принятое компаниями электросвязи было оригинальным, но единственно правильным — модулировать на каждом телефонном канале несущую частоту радиодиапазона, как это делается в радиосвязи и радиовещании. Причем, каждому телефонному каналу при этом выделяется ...

6. Трехэлектродные лампы - Параметры

Поскольку участок сетка — катод подобен диоду, то иногда он используется как диод и тогда рассматривают параметры этой диодной части триода. ...

7. Рабочий режим триода - Усилительный каскад с триодом

Они вызваны нелинейностью сопротивления Rg-к участка сетка — катод, который подобен диоду. При положительном напряжении сетки это сопротивление не более 1000 Ом, а при отрицательном стремится к бесконечности. Источник колебаний нагружен на такое нелинейное сопротивление, поэтому его напряжение искажается. Вследствие искажений напряжения сетки на выходе каскада будет искаженное усиленное напряжение. Наибольшие искажения получаются в том случае, когда сопротивление RИК во много ...

8. Усилитель класса А для электромагнитных головных телефонов с непосредственной междукаскадной связью

Проблема этого шума может быть решена различными способами: • уменьшить шум, создаваемый источником опорного сигнала. Диоды с прямым смещением создают мало шумов, по этой причине дешевые красные светодиоды являются идеальными. Если должен использоваться стабилитрон, то шум должен фильтроваться; • шум не является проблемой сам по себе, он становится проблемой, когда напряжение сигнала достаточно низкое, и отношение сигнал / шум становится критическим. Решение: не использовать схемы сдвига уровня с источником тока в...

9. Пример разработки двухтактного усилителя мощности

Если необходим высоковольтный источник питания с напряжением порядка 330 В, то в его сглаживающих фильтрах можно применить конденсаторы, предназначенные для работы импульсных источниках питания и рассчитанные на рабочие напряжения 385 В; высоковольтное напряжение может быть обеспечено применением изолирующего (развязывающего) трансформатора с мостовой схемой выпрямления на кремниевых диодах и накопительным конденсатором. Если при работе будет допущена какая-нибудь ошибка, то ее лучше соверш...

10. Особенности работы электронных ламп на СВЧ - Основные типы электронных ламп для СВЧ

Выпущены также и другие «карандашные» диоды и триоды. Значительный интерес представляет также сверхминиатюрный триод с цилиндрическими выводами (рис. 24.10, в). Он предназначен для усилительных каскадов по схеме с общей сеткой, сл...

11. Многоэлектродные и специальные лампы - Устройство и работа тетрода

Совместное действие напряжений анода, экранирующей и управляющей сетки заменяется влиянием действующего напряжения UД, приложенного к аноду эквивалентного диода, если этот анод поставить на место управляющей сетки: UД ≈ Ug1 + D1Ug2 + D1D2 Ua. (19.3) Формула эта показывает, что действие экранирующей сетки ослабляется только управляющей сеткой (Ug2 умножается на D1), а действие анода ослаблено обеими сетками (Ua умножается на D1D2). Теперь можно выразить закон степени трех вторых для тетрода: iк = gUД3/2, (19.4) где коэффициент g зависит от геометрических размеров электродов. Катодный ток в тетроде является суммой всех токов: iк = ia + ig2 + ig1 (19.5) При отрицательном напряжении управ...

12. Принцип устройства и работы электро-вакуумных приборов - Устройство и работа диода

Он протекает в анодной цепи и обозначается Iа или ia В диоде катодный и анодный токи равны друг другу: ia = iк.(15.3) Анодный ток является главным током электронной лампы. Электроны этого тока движутся внутри лампы от катода к аноду, а вне лампы — от ано...

13. Специальные электронные приборы для СВЧ - Магнетрон

Между анодом и катодом создается ускоряющее поле, силовые линии которого расположены радиально, как в диоде с цилиндрическими электродами. Вдоль оси магнетрона действует сильное постоянное магнитное поле,...

14. Проблемы смещения по постоянному току

Тем не менее, приведенные выше уравнения и вольтамперная характеристика диода дают основания считать, что искажения, вносимые за счет диода катодного смещения могут быть уменьшены следующими способами: • исключая диодное смещение как таковое для каскадов с малыми анодными токами 1а < 10 мА, поскольку внутреннее сопротивление rдиода особенно нелинейно при малых токах; • максимизируя нагрузочное сопротивление каскада RH • уменьшая напряжение выходного сигнала VRH. Эти условия подразумевают, что диодное смещение подходит наилучшим образом для: • входных каскадов предусилителей и корректоров АЧХ граммофонных пластинок по стандарту RIAA: у этих каскадов как правило анодный ток Ia больш...

15. Собственные шумы электронных ламп - Шумовые параметры

Так как шумовой ток диода в режиме насыщения легко определяется по приведенной формуле, то в качестве генераторов шумов для испытания радиоэлектронных устройств, например радиоприемников, применяют специальные шумовые диоды. Для сравнения различных ламп по шумовым свойствам в качестве шумовых параметров пользуются эквивалентным шумовым напряжением Uш.э и шумовым сопротивлением лампы Rш.э, введенными на основании следующих соображений. Рис. 23.1. Усилительный каскад с источником эквивалентного шумового напряжения лампы Рие. 23.2. Усилительный каскад с эквивалентным шумовым сопротивлением лампы Считают, что сама лампа является идеальной, т. е. не шумит, а создает шум за счет усиления некоторого шумового напряжения, подведенного к ее сетке. Такое напряжение шумов, наблюдаемых пр...

16. Газоразрядные и индикаторные приборы - Дисплеи

Дисплеи на светоизлучающих диодах, как правило, имеют небольшие (несколько сантиметров) линейные размеры и низкое (не более 5 В) напряжение питания. Дисплеи на газоразрядных элементах, иначе плазменные, имеют две взаимно перпендикулярные системы электродов в виде проводящих полос. Между электродами инертный газ — неон, или ксенон, или смесь газов. Такие системы иногда называют еще газоразрядными индикаторными панелями (ГИП). Дисплеи с электродами в виде полос могут иметь различное число электродов, например 512 горизонтальных и сто...

17. Особенности работы электронных ламп на СВЧ - Входное сопротивление и потери энергии

Сетку триода будем считать настолько густой, что участки сетка — катод и анод — сетка можно рассматривать как отдельные диоды. До момента t1 лампа заперта и токов нет. В момент t1 лампа отпирается, начинается движение электронов от катода (точнее, от «электронного облачка» около катода) к сетке и наведенный ток i1 в проводе сетки возрастает. Такой же ток iк, равный i1 появляется и в проводе катода. Если в момент t2 промежуток сетка — катод уже наполовину заполнен электронами, то ток i1 равен некоторому среднему значению. Далее он продолжает возрастать, достигая максимального значения в момент t3, когда электронный поток дойдет до сетки. Электроны на сетку не попадают,...

18. Трехэлектродные лампы - Характеристики

Характеристика для сеточного тока идет из начала координат подобно характеристике диода. Увеличение положительного напряжения сетки вызывает сначала рост всех токов. Постепенному переходу в режим насыщения соответствует верхний участок характеристики для анодного тока (ВГ). В режиме насыщения при увеличении сеточного напряжения катодный ток растет незначительно, но сеточный ток возрастает и за счет этого уменьшается анодный ток. При большом положительно...

19. Выпрямители с умножением (умножители) напряжения

Преимущество так называемого «плавающего» удвоителя напряжения заключается в том, что в схеме используются два совершенно идентичных конденсатора, номинальное напряжение которых рассчитано на половину выходного напряжения, однако, рабочие напряжения диодов должны иметь значения, превышающие 2√2Vm(RMS).Так как каждый из конденсаторов заряжается ...

     >>>>>     0
!...................
20
!...................
40
!...................
60
!...................
80
!...................
100
!...................
120
!...................
 

 

 

Информация

 

Информация

Неприменимость законов статического режима к динамическому объясняется инерцией электронов. Рис. 24.2. Сравнение времени пролета электронов с периодом колебаний Вместо времени пролета часто пользуются углом пролета αпр, который связан с временем tпр соотношением αпр = ω tпр, (24.3) где ω — угловая частота переменного напряжения электродов лампы. Очевидно, что αпр есть изменение фазового угла переменного напряжения за время tпр. Если, например, tпр = Т/4, то αпр = 90°. При углах пролета меньше 20° инерцию электронов обычно не учитывают, т. е. режим считают
квазистатически-
м. Рассмотрим особенности электронных процессов в триоде на СВЧ, имея в виду, что электрон большую часть времени пролета тратит на промежуток катод — сетка, так как здесь ускоряющая разность потенциалов невелика. Пусть, для примера, время пролета на этом участке равно половине периода, а рабочая точка установлена в самом начале анодно-сеточной характеристики лампы. На более низких частотах при этом был бы режим отсечки анодного тока, т. е. импульсы анодного тока проходили бы в течение положительных полупериодов переменного сеточного напряжения, а во время отрицательных полупериодов лампа была бы заперта. Но если tпр = Т/2, то работа лампы существенно изменится. Электроны, начавшие свое движение от катода в начале положительного полупериода сеточного напряжения, пролетят сквозь сетку в конце этого полупериода. Последующие электроны, начавшие движение позже, не успеют долететь до сетки во время положительного полупериода. Они еще будут в пути, когда на сетке переменное напряжение уже изменит свой знак и поле между сеткой и катодом станет тормозящим. Многие электроны будут заторможены, остановятся, не долетев до сетки, и вернутся на катод. Это особенно относится к электронам, начавшим движение от катода в конце положительного полупериода, так как они почти сразу попадают в тормозящее поле. Возвращение части электронов обратно на катод уменьшает амплитуду импульсов анодного тока. Уменьшается полезная мощность, отдаваемая лампой, и начинается бомбардировка катода возвращающимися электронами. Из-за этого происходит дополнительный нагрев катода. Мощность на нагрев расходуется источником переменного сеточного напряжения. Что же касается электронов, успевших пролететь сквозь сетку, то, когда они движутся далее к аноду, напряжение сетки становится уже отрицательным, а значит, увеличивается разность потенциалов между анодом и сеткой и электроны с увеличенной энергией бомбардируют анод. Дополнительная мощность на эту бомбардировку также отбирается от источника усиливаемого напряжения. Если рассмотреть электронные процессы в других режимах, то можно прийти к таким же выводам: вследствие инерции электронов уменьшается переменная составляющая анодного тока, увеличивается мощность потерь на аноде и дополнител

 
 
Сайт создан в системе uCoz