Содержание

 

 
 

Электронный поток

1. Учет собственных шумов лампы

Шум в электронной лампе возникает по той причине, что протекающий в ней анодный ток Iа существует за счет множества отдельных электронов, которые бомбардируют анод, а также потому, что электроны, покидающие катод в результате термоэлектронной эмиссии и образующие электронное облако, имеют разброс по своим скоростям (который описывается так называемым распределением Максвелла). Отсюда следует, что физико-химические свойства самого катода и соответствующие процессы, происходящие на нем, могут значительно повлиять на уровень собственны...

2. Трехэлектродные лампы - Токораспределение

Токораспределение При положительном напряжении сетки наблюдается токораспределение, т. е. распределение катодного тока между сеткой и анодом. Если напряжение анода выше напряжения сетки, то часть электронов попадает на сетку, а электроны, пролетевшие сквозь сетку, летят к аноду. Такой режим называют режимом перехвата. В этом режиме ток сетки значительно меньше анодного. Если же напряжение сетки выше н...

3. Особенности работы электронных ламп на СВЧ - Входное сопротивление и потери энергии

На рисунке для этого режима показаны графики наведенных токов в цепях триода (рис. 24.8,б и в) и распределение электронного потока, т. е. конвекционного тока, в разные моменты времени (рис. 24.8, г). Сетку триода будем считать настолько густой, что участки сетка — катод и анод — сетка можно рассматривать как отдельные диоды. До момента t1 лампа заперта и токов не...

4. Применение экранированных ламп

Это очевидно, поскольку в пентоде происходит распределение электронного потока, создаваемого катодом, между двумя положительно заряженными элек...

5. Выбор величины сопротивления резистора в цепи сетки

Молекулы остаточного газа находятся в постоянном хаотическом движении, называемом броуновским движением, которое определяет равномерное распределение отдельных молекул газа внутри объема баллона электронной лампы. Таким образом, довольно велика вероятность нахождения отдельных молекул газа на пути движения электронов от катода к аноду лампы. Изначально молекулы газа являются электрически нейтральными, то есть не заряжены. Когда на большой скорости происходит ...

6. Особенности цифрового сигнала от компакт-диска

Однако, оказывается возможным усилить чисто субъективное чувство улучшения путем манипулирования с частотным распределением квантованного (оцифрованного) шума, используя такой технический прием, как взвешенные коэффициенты шума. В настоящее время это позволяет достичь улучшения порядка 18 дБ (пригодного к эксплуатации на практике), которое замерялось с использованием весового фильтра, который также привел к чисто субъективному улучшению примерно на 18 дБ. Таким образом, 16...

7. Многоэлектродные и специальные лампы - Устройство и работа лучевого тетрода

На рис. 19.10 показано распределение электронов в электронном пучке и потенциала в промежутке анод — экранирующая сетка при uа < иg2. Кривая 1 соответствует обычному тетроду или лучевому тетроду, если ток в нем небольшой. Кривая 2 для лучевого тетрода с нормальным анодным током показывает, что при иа = 50 В ...

8. Специальные электронные приборы для СВЧ - Лампы бегущей и обратной волны

Знаками «плюс» и «минус» показано распределение потенциалов на проводе спирали, причем жирные знаки соответствуют более высокому потенциалу. Изображено поле в какой-то определенный момент времени. Так как волна бежит по спирали, то поле вращается вокруг ее оси и перемещается вдоль этой оси со скоростью υф. Существует, конечно, еще электрическое по...

9. Электронная лампа, радиолампа. Физика и схемотехника

Применение диода для выпрямления переменного тока Основные типы Трехэлектродные лампы Физические процессы Токораспределение Действующее напряжение и закон степени трех вторых Характеристики Параметры Рабочий режим триода Особенности Усилительный каскад с триодом Параметры усилительного каскада Аналитический расчет и эквивалентные схемы усилительного каска...

10. Многоэлектродные и специальные лампы - Межэлектродные емкости тетродов и пентодов

Принцип устройства и условное графическое обозначение лучевого тетрода Рис. 19.10. Распределение электронов (а) и потенциала (б) в лучевом тетроде ...

11. Особенности работы электронных ламп на СВЧ - Наведенные токи в цепях электродов

6,б показано для различных моментов времени распределение электронного потока, т.е. конвекционного тока, в промежутке анод — катод. Рис. 24.6. Наведенный ток в диоде В момент t1 электроны начинают двигаться от катода (точнее, от «электронного облачка» около катода) и возникает наведенный ток. Промежуток анод — катод еще не заполнен электронами. Через некоторое время, в момент t2, значительна...

12. Двухэлектродные лампы - Физические процессы

(16-2) Наглядное представление о процессах в диоде дают потенциальные диаграммы, показывающие распределение потенциала в пространстве анод — катод (рис. 16.2). По горизонтальной оси откладывают расстояние от катода, а по вертикальной — потенциал, причем положительный при...

13. Газоразрядные и индикаторные приборы - Тлеющий разряд

Напряжение на приборе также скачком понижается на несколько вольт или даже больше, что объясняется перераспределением напряжения Eа между внутренним сопротивлением прибора постоянному току R0 и сопротивлением Rогр. Рис. 21.4. Вольт-амперная характеристика темного (область I) и тлеющего (области II, III) разряда При темном разряде сопротивление R0 гораздо больше сопротивления Rогр, которое выбрано таким, чтобы мог возникнуть тлеющий разряд. Практически все напряжение Uа при темном разряде приложено к прибору. На резисторе Rогр напряжение близко к нулю. С в...

14. Раздельное выравнивание частотной характеристики блока коррекции RIAA

Поэтому, следует рассмотреть, каким образом можно осуществить распределение задач коррекции между раздельными цепями. Наиболее рациональным путем осуществления такого разделения, является объединение элементов цепи, определяющих постоянную времени 3180 мкс, совместно с таковыми же для цепи, определяющих постоянную времени 318 мкс, в одну пару, и создание отдельной цепи...

     >>>>>     0
!...................
20
!...................
40
!...................
60
!...................
80
!...................
100
!...................
120
!...................
 

 

 

Информация

 

Информация

В нашем примере отношение частоты 1 МГц к частоте, соответствующей ближайшей постоянной времени 318 мкс, то есть к частоте 500,5 Гц, будет равно отношению 2000:1. Поэтому совершенно безболезненно можно пренебречь взаимодействием и более точно рассчитать значения для попарно связанных параметров цепей, определяющих постоянные времени 318 мкс и 3180 мкс. В случае, если цепь питается от идеального источника, имеющего нулевое сопротивление, идеальными значениями для сопротивлений резисторов окажутся величины 180 кОм и 20 кОм (в соответствии с идеальным отношением 9:1). Такой выбор определяется, прежде всего, тем, что они оба входят в серию Е24, а емкость конденсатора будет при этом равна 16 нФ (с точностью исполнения 0,6%). К сожалению, реальный источник питания обладает конечным значением сопротивления, поэтому для верхнего по схеме резистора следует ожидать значения сопротивления, которое окажется ближе к величине 200 кОм, после чего необходимо будет оценить, какие значения величин для двух остальных элементов цепи будут задаваться этим отличающимся от идеального значением. Так как в качестве входных использованы два идентичных каскада, выходное сопротивление составит 5,66 кОм, что приведет к значению сопротивления верхнего резистора 205,66 кОм. Значение сопротивления нижнего резистора составит, таким образом, 22,85 кОм, а величина емкости будет равна 13,92 нФ. Для получения величины сопротивления 22,85 кОм можно использовать резистор 23,2 кОм, имеющий точность исполнения 0,1 %, параллельно которому включен резистор с сопротивлением 1,5 МОм, имеющий точность исполнения 1 %. Значение емкости конденсатора 13,92 нФ может быть получено при параллельном включении двух конденсаторов, имеющих емкости по 6,8 нФ, последовательно с конденсатором, имеющим емкость 330 пФ. После этого можно начертить полную схему предусилителя с рассчитанными значениями элементов схемы (рис. 8.27). Подгонка требуемых значений пассивных элементов под стандартные нормали В процессе расчета схем коррекции частотных характеристик и фильтров постоянно получаются очень неудобные для практического при

 
 
Сайт создан в системе uCoz