Содержание

 

 
 

Межэлектродные емкости в тетроде

1. Многоэлектродные и специальные лампы - Устройство и работа тетрода

Устройство и работа тетрода Четырехэлектродные лампы, или тетроды, имеют вторую сетку, называемую экранирующей или экранной и расположенную между управляющей сеткой и анодом. Назначение экранирующей сетки — повышение коэффициента усиления μ и внутреннего сопротивления Ri а также уменьшение проходной емкости Са-g. Для величин, относящихся к экранирующей сетке, принят индекс g2, а к управляющей сетке,— g1. Если экранирующая сетка соединена с катодом, то она экранирует катод и управляющую сетку от действия анода, «пере...

2. Собственные шумы электронных ламп - Причины собственных шумов

Флюктуации вторичной электронной эмиссии электродов лампы, находящихся под положительным потенциалом, а также различных изоляторов и стекла баллона также играют роль в создании собственных шумов. 3. Флюктуации ионных токов наблюдаются при недостаточном вакууме. Чем хуже вакуум, тем больше ионов и тем сильнее сказывается этот вид флюктуации. 4. Флюктуации токораспределения бывают всегда при наличии в лампе двух или более электродов с положительным потенциалом. З...

3. Электронно-лучевые трубки - Краткие сведения о различных электронно-лучевых трубках

Ось катода, модулятора и экранирующего электрода расположена под углом к оси трубки, а ось анода имеет излом. Поток отрицательных ионов (сплошные линии) и электронов (штриховые линии), входя ...

4. Двухэлектродные лампы - Закон степени трех вторых

Кривую ОАБ иногда называют теоретической характеристикой диода. Для диода с плоскими электродами g = 2,33·10-6Qa/da-k2, (16.4) где Qa — действующая площадь анода; da-k — расстояние анод — катод. Истинная зависимость, между анодным током и анодным напряжением заметно отличается от закона степени трех вторых. Но, несмотря на неточность, закон степени трех вторых в простой форме учитывает нелинейные свойства лампы. ...

5. Надежность и испытание электровакуумных приборов

При отсутствии обрыва вывода прибор покажет наличие тока в проводе данного электрода. Рис. 26.5. Простейшая схема для проверки выводов лампы и эмиссии катода Поскольку главный параметр усилительных ламп крутизна, то весьма желательна ее провер...

6. Фотоэлектронные приборы - Фотоэлектронная эмиссия

Фотоэлектронная эмиссия Фотоэлектронная эмиссия, называемая иначе внешним фотоэффектом, представляет собой электронную эмиссию под действием электромагнитного излучения. Эмитирующий электрод при этом называют фотоэлектронным катодом (фотокатодом), а испускаемые им электроны — фотоэлектронами. Начало изучения фотоэлектронной эмиссии относится к 1886 г., когда немецкий ученый Г. Герц заметил, что напряжение возникновения электрического разряда между электродами снижается, если осветить од...

7. Газоразрядные и индикаторные приборы - Электрический разряд в газах

Плотность тока при этом достигает единиц и десятков миллиампер на квадратный сантиметр, и образуется объемный заряд, существенно влияющий на электрическое поле между электродами. Напряжение для тлеющего разряда составляет десятки или сотни вольт. Разряд поддерживается за счет электронной эмиссии катода под ударами ионов. Основные приборы тлеющего разряда — стабилитроны (газоразрядные стабилизаторы напряжения), газосветные лампы, тиратроны тлеющего разряда, знаковые индикаторные лампы и декатроны (газоразрядные счетные приборы). Дуговой разряд получается при плотности тока...

8. Особенности работы электронных ламп на СВЧ - Наведенные токи в цепях электродов

Тогда на зажимах контура и на электродах лампы будет переменное напряжение. Предположим, что между электродами движется поток электронов (каким способом он получен, пока не имеет значения). Ес...

9. Многоэлектродные и специальные лампы - Характеристики и параметры лучевого тетрода

При переходе от области II в область I анодных характеристик значения S, Ri и μ для лучевого тетрода резко уменьшаются. Межэлектродные емкости у лучевых тетродов примерно такие же, как у обычных, но емкость Сa-g1 несколько больше, из-за того что экранирующая сетка более редкая. Схема включения лучевого тетрода в усилительный каскад такая же, как и для пентода. Напряжение экранирующей сетки может быть равно анодному или даже несколько больше его (в более мощных каскадах). В последнем случае не следует выключать анодное напряжение или размыкать анодную цепь, оставляя полное напряжение на экранирующей сетке...

10. Пентоды в качестве приемников неизменяющегося тока

Успешная разработка приемников неизменяющегося тока на пентодах требует наличия полных спецификаций со всеми семействами статических характеристик или специальной установки для проверки электронных ламп и снятия их статических характеристик (чтобы выставлять нужные напряжения на электроды и экспериментально определять токи, что более надежно). Если приемник неизменяющегося тока используется в каскаде с низким уровнем сигнала, стоит принять во внимание помехи и применить экранирование. Некоторые лампы своей конструкцией подразумевают экранирование. Например, EF184 имеет цельный металлический экран, EF91 имеет экран из проводящей краски внутри колбы лампы, EL83 и EL822 - мощные электронные лампы — совершенно не экранированы. ...

11. Двухэлектродные лампы - Физические процессы

Физические процессы Рассмотрим диод с плоскими электродами. Анодное напряжение создает между анодом и катодом электрическое поле. Если нет электронной эмиссии катода, то поле будет однородным. Когда катод испускает большое число электронов, то они в пространстве анод — катод создают отрицательный объемный (пространственный) заряд, препятствующий движению электронов к аноду. Наиболее плотный объемный заряд («электронное облачко») вблизи катода (рис. 16.1). За счет объемного заряда электрическое поле становится неоднородным. Возможны два основных режима работы диода. Если поле на все...

12. Трехэлектродные лампы - Действующее напряжение и закон степени трех вторых

3) Учитывая, что в эквивалентном диоде анод расположен на месте сетки реального триода, для триода с плоскими электродами получаем g = 2,33·10-6Qa/dg-k2, (17.4) где dg-k — расстояние сетка — катод. Площадь поверхности анода Qa в эквивалентном диоде в этом случае равна площади поверхности действительно...

13. Специальные электронные приборы для СВЧ - Лампы бегущей и обратной волны

В левой части удлиненного баллона помещен электронный прожектор с подогревным катодом К, фокусирующим электродом ФЭ и анодом А. Электронный луч, созданный прожектором, проходит далее внутри замедляющей системы (например, в виде проволочной спирали), выполняющей роль внутреннего провода коаксиальной линии. Наружным проводом служит металлическая трубка Т. Спираль укреплена на специальных изоляторах (для упрощения они не показаны). Фокусирующая катушка ФК, питаемая постоянны...

14. Фотоэлектронные приборы - Электровакуумные фотоэлементы

Он объясняется термоэлектронной эмиссией катода и токами утечки между электродами. При комнатной температуре ток термоэмиссии может достигать 10-10 А, а токи утечки — 10-7 А. В специальных конструкциях фотоэлементов удается значительно снизить токи утечки, а ток термоэмиссии можно уменьшить лишь охлаждением катода до очень низких температур...

15. Многоэлектродные и специальные лампы - Специальные лампы

Существовали также восьмиэлектродные октоды, в которых вторая сетка работала как анод триода, а третья сетка была экранирующей. В РЭА широко использовались различные комбинированн...

     >>>>>     0
!...................
20
!...................
40
!...................
60
!...................
80
!...................
100
!...................
120
!...................
 

 

 

Информация

 

Информация

При рассмотрении схемы выпрямителя, питающегося от сети переменного тока промышленной частоты, необходимо точно задавать максимально допустимые значения напряжений и токов. Однако, величина ни того, ни другого параметра не является строго однозначной, как это может показаться на первый взгляд (рис. 6.4). На рис. 6.4 приведена схема выпрямителя, в которой использованы два кремниевых диода, включенных в плечи вторичной обмотки трансформатора, имеющей отвод от средней точки (обмотки 300-0-300 В). Напряжение холостого хода на накопительном конденсаторе составит 424 В постоянного тока (необходимо обратить внимание, что это напряжение значительно превышает то значение, которое было бы, если бы вместо кремниевых диодов использовались ламповые диоды: прямая замена кремниевых диодов на ламповые недопустима). Предельно допустимое напряжение диода, удовлетворяющее требованиям схемы, представляет максимально допустимое обратное напряжение, которое может быть многократно приложено к нему, VRPM. Иногда оно указывается как рабочее напряжение диода, (или, как сложилось исторически, максимальное или амплитудное обратное напряжение). В табл. 6.2 сравниваются необходимые рабочие напряжения кремниевых диодов для мостовой схемы выпрямления и схемы с отводом от средней точки вторичной обмотки трансформатора. Рис. 6.4 Влияние конденсатора на величину выпрямленного напряжения Таблица 6.2 Схема
выпрямленияОтно-
шение допустимого обратного напряжения диода к
среднеквадратич-
ескому значению напряжения, VRPM/ VRMS Количество диодов, включаемых последовательно в каждом плече схемы С отводом от центрального витка обмотки
трансформатора2-
√21
Мостовая√-
22 При выпрямлении высоких напряжений схема с отводом от центрального витка вторичной обмотки трансформатора имеет тот недостаток, что для нее требуется использовать
полупроводников-
ые диоды, рассчитанные на удвоенные значения напряжения VRPM. Поэтому в схеме выпрямителя, в которой используется вторичная обмотка трансформатора с отводом от средней точки и напряжения 300-0-300 В необходимо будет использовать диоды, у которых VRRM > 849 В. Однако в выпрямителе, в котором будет использоваться только одна вторичная обмотка, рассчитанная на

 
 
Сайт создан в системе uCoz