Содержание

 

 
 

При понижении накала шумы усиливаются, так как уменьшается объемный заряд, который в некоторой степени подавляет флюктуации анодного тока

1. Специальные электронные приборы для СВЧ - Амплитрон и карматрон

В отличие от ЛОВМ они имеют такой же накаленный цилиндрический катод, как и магнетрон. Усилительный прибор амплитрон показан схематически на рис. 25.20. Он имеет замедляющую систему в виде цепочки резонаторов, но в отличие от магнетрона эта цепочка разомкнута и в анодном блоке образованы вход и выход. Чтобы устранить возможность самовозбуждения колебаний π-вида (как в магнетроне), в амплитроне делают обычно нечетное число резонаторов. Так же, как и в магнетроне, возникает замкнутое вращаю...

2. Специальные электронные приборы для СВЧ - Магнетрон

Для того чтобы не было перекала катода, во время работы магнетрона обычно уменьшают напряжение накала. Кроме того, поверхность катода необходимо делать более прочной, чтобы предотвратить ее разрушение ударами электронов. Более сложным оказывается путь «полезного» электрона Б, попавшего в тормозящее переменное поле резонатора 2. Такой электрон отдает часть своей энергии резонатору и уже не имеет энергии, достаточной для того, чтобы вернуться на катод. Он теряет п...

3. Специальные электронные приборы для СВЧ - Лампы бегущей и обратной волны

Электроны, эмитированные накаленным катодом К, попадают в постоянное электрическое поле напряженностью Еу, созданное напряжением управляющего электрода...

4. Надежность и испытание электровакуумных приборов

Проверка целости подогревателя или катода прямого накала, а также отсутствия замыканий между электродами производится с помощью омметра. Можно применить и простейший испытатель (пробник), состоящий из последовательно соединенных источника тока (например, сухого элемента) и вольтметра. Вместо последнего можно применить миллиамперметр с добавочным резистором, или головной телефон, или лампочку накаливания. Эмиссию катода проверяют по схеме, приведенной на рис. 26.5. Подается нормальное напряжение накала, все сетки соединяются с анодом и работают как один анод, а напряжение источника питания анодной цепи должно быть...

5. Принцип устройства и работы электро-вакуумных приборов - Особенности устройства электронных ламп

Вакуум в лампах необходим прежде всего потому, что накаленный катод при наличии воздуха сгорит. Кроме того, молекулы газов не должны мешать свободному полету электро...

6. Принцип устройства и работы электро-вакуумных приборов - Термоэлектронные катоды

Вдоль катода нет падения напряжения от тока накала. Анодное напряжение для всех точек поверхности катода одно и то же и не пульсирует при колебаниях напряжения накала. Достоинство ламп с катодами косвенного накала, кроме того, — ослабление микрофонного эффекта. Масса катода сравнительно велика, и его трудно привести в состояние колебаний. По сравнению с катодами прямого накала катоды косвенного накала сложнее, и их трудно ско...

7. Определение параметров неизвестного трансформатора

Если известно, что усилитель может оказаться подверженным высоковольтным разрядам и дуговым процессам, то возможным решением проблемы (в зависимости от типа усилителя) будет включение в схему резистора, гасящего возникающую дугу, на участке между центральным отводом низковольтного (накального) источника и точкой нулевого потенциала высоковольтного источника. Например, использование (проволочного) резистора марки W/Wc сопротивлением 4,7 кОм и мощностью 6 Вт. Однако «плавающий» низковольтный источник питания может в этом случае вызвать возникновение проблем, связанных с фоновыми шумами сети питания, в частности, из-за плохого качества спиралей накала (разводка, изолирующая обмазка, замыкания на шасси). Рассмотрим и некоторые другие механизмы повреждения трансформаторов. Слишком большой ток, проходящий через выходную лампу, может вызват...

8. Источники питания низкого напряжения и синфазный шум

В схемах современных предусилительных каскадов используются цепи питания накала ламп на постоянном токе, однако, в силу высоких значений токов (достигающих значения 1 — 2 А), которые к тому же очень трудно сгладить до приемлемого уровня пассивными методами, во всех схемах практически безоговорочно используются стабилизаторы напряжения, позволяющие снизить уровень фонового напряжения до уровня нескольких милливольт. Использование стабилизированных источников дл...

9. Газоразрядные и индикаторные приборы - Электрический разряд в газах

К приборам несамостоятельного дугового разряда относятся газотроны и тиратроны с накаленным катодом. В ртутных вентилях (экситронах) и игнитронах, имеющих жидкий ртутный катод, а также в газовых разрядниках происходит самостоятельный дуговой разряд. При дуговом разряде плотность тока может доходить до сотен ампер на квадратный сантиметр и объемный заряд сильно влияет на ...

10. Двухэлектродные лампы - Физические процессы

Когда объемный заряд небольшой, то во всех точках потенциал остается положительным (кривая 2 находится ниже горизонтальной оси) и поле будет ускоряющим, что соответствует режиму насыщения. При увеличении накала катода объемный заряд также растет и потенциал в различных точках понижается еще больше. Кривая распределения потенциала прогибается сильнее, и отрицательный потенциал вблизи катода...

11. Неидеальности трансформаторов

С целью снижения искажений в усилителях с несимметричным выходом используются, как правило, наиболее линейные триоды с прямым накалом катодов, такие, например, как 2АЗ, 300D, 211 и 845, а не лучевые тетроды, либо пентоды, подключаемые по схеме триода. К сожалению, прямонакальным катодам свойственно наличие фона переменного тока в случае их питания переменным током от накальной обмотки силового трансформатора. Кратко резюмируя изложенное, ...

12. Выбор электронной лампы по критерию низких искажений

Физически, лампа типа 6SN7GT имеет нити накала, вмонтированные внутри параллельно, тогда как лампа типа 12SN7GT имеет те же нити, вмонтированные последовательно, причем конструкция подогревателя идентичная, поэтому искажения должны быть подобные. В следующей таблице (табл. 4.9) более подробно сравниваются искажения ламп типов 6SN7GT и 12SN7GT. Таблица 4.9 Количество2-яσ3-яσ4-яσ 6SN7GT 28-503.5-838,9-965,7 12SN7GT 16-513,8-877,3-976,5 Две лампы подобны - разность находится в пределах погрешности. Подобным образом, можно сравнить и лампы типов 7N7...

13. Принцип устройства и работы электро-вакуумных приборов - Устройство и работа диода

Она состоит из источника Eн и подогревателя (или катода прямого накала). Ток накала обозначают Iн, а напряжение накала, т. е. напряжение между выводами подогревателя (или катода прямого накала), обозначают Uн. Напряжение накала всегда низкое — единицы, реже десятки вольт. Ток накала у маломощных ламп составляет деся...

14. Рабочий режим

В случае отсоединения нагрузки параллельно включенный элемент стабилизатора вынужден пропускать по своим цепям весь дополнительный к своему обычному значению ток нагрузки, при этом он должен быть способен рассеивать всю выделяющуюся на нем значительную мощность. Отказ (обрыв) нити накала одной из ламп, подогреватели которых включены по схеме последовательного питания, прекращает подачу питания на все остальные лампы, приводя к их выключению и полному отключению нагрузки высоковольтного источника питания. Таким образом, параллельная схема стабилизации и последовательная схема включения цепей подогревателей ламп не представляют приемлемое сочетание технических решений, особенно в тех случаях, когда необходимый ток высоковольт...

15. Двухэлектродные лампы - Основные типы

Двойные диоды с катодами прямого накала обычно изображаются упрощенно — с одним катодом. В действительности они имеют два катода, соединенные параллельно или последовательно. Наиболее универсальные двойные диоды с разделенными катодами имеют отдельные выводы от катодов. Эти диоды нередко используются в двух различных частях схемы. В таких случаях показывают в соответствующих местах половинки лампы. У некоторых двойных диодов ставится металли...

16. Увеличение максимально допустимого обратного напряжения VRRM при последовательном включении выпрямительных диодов

Примечание 4. Напряжение накала в режиме пониженного энергопотребления: 16 В; мощность, выделяющаяся в интегральной микросхеме 317Т серии: 4,4 Вт. Ток разогретых нитей накала: 300 мА; напряжение накала при разогретых катодах: 25,2 В; мощность, выделяющаяся в интегральной микросхеме 317Т серии: 2,9 Вт Примечание 5. Для обеих логических интегральных микросхем обязательно подключение керамических конденсаторов 100 нФ между выводами 0 В и +5 В. Схема задержки включения высоковольтного напряжения В сам...

17. Многоэлектродные и специальные лампы - Специальные лампы

У этих ламп ниже мощность накала, расход энергии анодного источника, межэлектродные емкости и ток экранирующей сетки, а также выше механиче...

     >>>>>     0
!...................
20
!...................
40
!...................
60
!...................
80
!...................
100
!...................
120
!...................
 

 

 

Информация

 

Информация

Закон степени трех вторых Для диода, работающего в режиме объемного заряда, анодный ток и анодное напряжение связаны нелинейной зависимостью, которая приближенно выражается законом степени трех вторых: ia = gua3/2, (16.3) где коэффициент g зависит от геометрических размеров и формы электродов. Анодный ток пропорционален анодному напряжению в степени три вторых (3/2), а не в первой степени, как в законе Ома. Если увеличить, например, анодное напряжение вдвое, то анодный ток возрастет в 2,8 раза (так как 23/2 = √23 ≈ 2,8), т.е. станет на 40% больше, чем должен быть по закону Ома. Графически этот закон изображается полу кубической параболой (рис. 16.4). Закон степени трех вторых неприменим для режима насыщения, когда ia = = Is = const. Кривую ОАБ иногда называют теоретической характеристикой диода. Для диода с плоскими электродами g =
2,33·10-6Qa/da--
k2, (16.4) где Qa — действующая площадь анода; da-k — расстояние анод — катод. Истинная зависимость, между анодным током и анодным напряжением заметно отличается от закона степени трех вторых. Но, несмотря на неточность, закон степени трех вторых в простой форме учитывает нелинейные свойства лампы. Закон степени трех вторых Для диода, работающего в режиме объемного заряда, анодный ток и анодное напряжение связаны нелинейной зависимостью, которая приближенно выражается законом степени трех вторых: ia = gua3/2, (16.3) где коэффициент g зависит от геометрических размеров и формы электродов. Анодный ток пропорционален анодному напряжению в степени три вторых (3/2), а не в первой степени, как в законе Ома. Если увеличить, например, анодное напряжение вдвое, то анодный ток возрастет в 2,8 раза (так как 23/2 = √23 ≈ 2,8), т.е. станет на 40% больше, чем должен быть по закону Ома. Графически этот закон изображается полу кубической параболой (рис. 16.4). Закон степени трех вторых неприменим для режима насыщения, когда ia = = Is = const. Кривую ОАБ иногда называют теоретической характеристикой диода. Для диода с плоскими электродами g =
2,33·10-6Qa/da--
k2, (16.4) где Qa — действующая площадь анода; da-k — расстояние анод — катод. Истинная зависимость, между анодным током и анодным напряжением заметно отличается от закона степени трех вторых. Но, несмотря на неточность, закон степени трех вторых в простой форме учитывает нелинейные свойства лампы.

 
 
Сайт создан в системе uCoz