Содержание

 

 
 

Внутреннее сопротивление

1. Расчет сопротивлений резистора катодного смещения входной лампы и резистора обратной связи

Если предположить, что сопротивление по постоянному току вторичной обмотки трансформатора пренебрежимо мало по сравнению с сопротивлением резистора обратной связи, то значение тока будет равно частному отделения напряжения 2,5...

2. Многоэлектродные и специальные лампы - Устройство и работа тетрода

10) Прибор с отрицательным сопротивлением может работать в качестве генератора. Динатронный эффект в тетроде вреден, так как из-за него создаются сильные искажения при усилении. Невыгодно и то, что ток экранирующей сетки больше полезного анодного тока. Может та...

3. Рабочий режим триода - Основные типы приемно-усилительных триодов

Особую группу представляют так называемые проходные триоды для работы в электронных стабилизаторах напряжения, имеющие малое внутреннее сопротивление, низкий коэффициент усиления, но высокую крутизну. Для электронных стабилизаторов выпускаются также высоковольтные триоды с очень малой крутизной и очень большими значениями μ и Ri. Много лет проводились работы по увеличению крутизны с целью улучш...

4. Принцип устройства и работы электро-вакуумных приборов - Термоэлектронные катоды

У оксидного слоя, как и у всех полупроводников, при повышении температуры сопротивление уменьшается. 2. Вследствие большого сопротивления оксидного слоя его нагрев катодным током соизмерим с нагревом от тока накала. 3. Различные участки оксидного слоя неодинаковы по сопротивлению и эмиссионной способности. Катодный ток распределяется так, что на участки с меньши...

5. Дифференциальная пара (дифференциальный каскад)

Тем не менее, если загружен только один из выходов, выходное сопротивление значительно повышается. Эквивалентное сопротивление, приведенное в направлении земли (напряжения питания) через сопротивление RH первой лампы, можно найти следующим образом: В тоже время, цепь, образованная RK попеременному току включена которое параллельно rк: Умножаем на (μ + 1): Если теперь разделить на RK (μ + 1), то получаем: Со стороны второго анода последовательно приведено сопрот...

6. Почему необходимо использовать трансформаторы

Выходной трансформатор используется для согласования низкоомного громкоговорителя с высоким сопротивлением ламп выходного каскада усилителя, обеспечивая, таким образом, передачу максимальной мощности от усилителя в громкоговорители. Если в трансформаторе изготавливается многосекционные вторичные обмотки, то это представляет пользователю дополнительные возможности производить согласование с различными по величинам нагрузками (сопротивлениями громкоговорителей), не производя полного перерасчета (и связанных с этим переделками) схемы. Входной трансформатор, например, повышающий трансформатор для головки звукоснимателя с подвижной катушкой, может значительно увеличив...

7. Газоразрядные и индикаторные приборы - Тлеющий разряд

Ионные приборы надо включать последовательно с ограничительным резистором (Rогр). Если его сопротивление очень большое (десятки или сотни мегаом), то при напряжении источника в сотни вольт разряд будет темным, поскольку ток не превысит нескольких микроампер. При значительно меньшем сопротивлении Rогр возникает тлеющий разряд, если напряжение источника не меньше UB. Дальнейшее уменьшение сопротивления Rогр может перевести разряд в дуговой. Это недопустимо для приборов тлеющего разряда, рассчитанных обычно на ток не выше десятков миллиампер. При возникновении дугового разряда ток возрастает во много раз и прибор выходит ...

8. «Согласованный» фазоинвертор

Таким образом, Но для случая «согласованного» фазоинвертора RL = Rk, поэтому В силу того, что значение усиления сигнала почти не отличается от единицы, величина емкости Миллера также будет очень маленькой, а каскад будет иметь широкую полосу пропускания. Выходное сопротивление «согласованного» фазоинвертора при равных (сбалансированных) нагрузках Случай «согласованного» фазоинвертора является особым случаем (в силу того, что RL = Rk) нешунтированного усилителя с общим катодом, в котором выходами являются как а...

9. Основные проблемы регулирования громкости

Поэтому, при проектировании регулятора громкости звука, который должен обеспечивать равномерную характеристику восприятия во всем звуковом диапазоне, необходимо использовать потенциометр, сопротивление которого изменяется по обратно — логарифмическому закону (или, иначе, по закону показательной функции). Это и является основной причиной всех проблем проектировщика. Изготовление переменного резистора с линейной шкалой не представляет проблем. Для этого просто наносится полоска из углеродосодержащего материала равномерной толщины и ширины на изолирующую подложку, изготавливаются контакты с каждого конца, затем тем, или иным способом изготавливается подвижный контак...

10. μ-повторитель

Так как коэффициент усиления катодного повторителя, известен, можно определить величину активной нагрузки, которая ему соответствует, и найти его входное сопротивление, что позволит выбрать подходящее значение емкости разделительного конденсатора. Из нагрузочной линии видно, что коэффициент усиления без учета применения обратной связи равен 29. Таким образом коэффициент усиления катодного повторителя будет 29/30, что равно 0,97. Для нижней электронной лампы анодная нагрузка составляет: Это дает величину ≈ 2 МОм, так что наши ранее высказанные предположения о коэффициенте усиления и линейности нижнего каскада были вполн...

11. Двухэлектродные лампы - Параметры

Наиболее удобен метод двух точек. Не следует смешивать сопротивление Ri с внутренним сопротивлением диода для постоянного тока Ro: Ro = ua / ia (16.8) Обычно сопротивление Ro несколько больше Ri. Из закона степени трех вторых следует, что Ro = 3/2 Ri но практическое соотношение может быть иным. Значение Ri тем меньше, чем меньше расстояние анод — катод и чем больше действующая площадь анода. ...

12. Практические методы настройки блока частотной коррекции RIAA

С уменьшением крутизны gm возрастает внутреннее выходное сопротивление лампы rа, что уменьшает усиление лампы и значение емкости Миллера. Для рассматриваемой схемы, лампами, которые могли бы повлиять на точность выравнивания частотных характеристик блоком RIAA из-за изменений значения емкости Миллера, являются вторая и оконечная лампы. Однако, так как они включены по схеме μ-повторителя, изменения параметра rа не влияют на величину усиления (при сопротивлении анодной нагрузки RL ≈ ∞), поэтому этот механизм не может оказать существенного влияния. Так как значение эквивалентного выходного сопротивления rout для ...

13. Усилитель на триоде с общим катодом

2 Усилитель с общим катодом с резистивной нагрузкой Предположим, что источник питания ВН имеет нулевое выходное сопротивление на всех частотах от постоянного тока до световых частот (в реальных устройствах сопротивление источников питания также близко к нулю). Прикладывая входное напряжение между сеткой и катодом, мы модулируем разность потенциалов сетка-катод Vck законом входного сигнала, и, таким образом, управляем током анода. Из статических характеристик (особенно проходных) лам...

     >>>>>     0
!...................
20
!...................
40
!...................
60
!...................
80
!...................
100
!...................
120
!...................
 

 

 

Информация

 

Информация

Межэлектродные емкости тетродов и пентодов На схеме усилительного каскада с тетродом (рис. 19.8) помимо емкостей Сg1-к, Сa-g1 и Са-к показаны емкость между сетками Сg1-g2, емкость анод — экранирующая сетка Сa-g2 и емкость экранирующая сетка — катод Сg2-к. Входная емкость тетрода в режиме нагрузки Свх.раб = Сg1-к + Сg1-g2 + Сa-g1 (1 + K). (19.24) Рис. 19.8. Схема усилительного каскада с тетродом Проходная емкость Сa-g1 в тетроде составляет малые доли пикофарада. Поэтому значение Сa-g1 (1 + K) гораздо меньше, нежели первые слагаемые. Считают Свх.раб ≈ Сg1-к + Сg1-g2. (19.25) У тетрода входная емкость в режиме нагрузки значительно меньше, чем у триода. Сравним, например, входные емкости для каскада с триодом, имеющего Сg-к = 12 пФ, Сa-g = 6 пФ, K = 20, и каскада с тетродом, у которого Сg1-к = 12 пФ, Сg1-g2 = 10 пФ, Сa-g1 = 0,02 пФ, K = 100. В статическом режиме для триода Свх = Сg-к + Сa-g = 12 + 6 = 18 пФ, для тетрода Свх = Сg1-к + Сg1-g2= 12 + 10 = = 22 пФ; в рабочем режиме для триода Свх.раб = Сg-к + Сa-g (1 + K)=12 + 6·(1 + 20) = 138 пФ, для тетрода Свх.раб ≈ Свх = 22 пФ. Выходная емкость тетрода Свых = Сa-к + Сa-g2, (19.26) что несколько больше, чем у триода (для него было Свых = Сa-к). Пентод имеет десять межэлектродных емкостей. Однако в усилительном каскаде экранирующая и защитная сетки для переменного тока обычно замкнуты с катодом. Поэтому емкости Сg2-к, Сg3-к и Сg2-g3 оказываются замкнутыми накоротко. Входная емкость пентода Свх.раб ≈ Свх = Сg1-к + Сg1-g2 + Сg1-g3. (19.27) Выходная емкость пентода Свых = Сa-к + Сa-g3 + Сa-g2. (19.28) Как правило, эта емкость немного больше, чем у тетрода. Рис. 19.9. Принцип устройства и условное графическое обозначение лучевого тетрода Рис. 19.10. Распределение электронов (а) и потенциала (б) в лучевом тетроде Межэлектродные емкости тетродов и пентодов На схеме усилительного каскада с тетродом (рис. 19.8) помимо емкостей Сg1-к, Сa-g1 и Са-к показаны емк

 
 
Сайт создан в системе uCoz